
Hands-On Exercises 1

OpenMP course

Hands-on exercises

INSTITUT DU DÉVELOPPEMENT

ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.9 – October 2019
J. Chergui, J. Gaidamour, R. Lacroix & P.-Fr. Lavallée

Hands-on exercises : Introduction 2

1 – Introduction

The hands-on exercises are done on the Jean Zay machine (HPE SGI 8600, 71560 cores,

40 cores per SMP node) in the $WORK/OpenMP tp directory. There are eleven

independent exercises. Each exercise is found in a directory named tp0 to tp10 which

systematically contains a Makefile for the compilation, a batch.sh file for submitting in

processing by lot and one or more source files to complete. The source files are available

in Fortran and in C.

☞ The sans indications openmp directory contains the sequential code sources.

☞ In the avec indications openmp directory, we help you by explicitly indicating the

places where the OpenMPdirectives must be inserted.

☞ The solution directory contains a solution for each exercise but, of course, it should

not be consulted until you have exhausted your own resources to find a solution.

INSTITUT DU DÉVELOPPEMENT

ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.9 – October 2019
J. Chergui, J. Gaidamour, R. Lacroix & P.-Fr. Lavallée

Hands-on exercises : Introduction 3

General comments

☞ Use the make mono command to compile a sequential version.

☞ Use the make para command to interpret the OpenMPdirectives and generate a

parallel version.

☞ Use the make clean command to erase the object and core files or the make cleanall

command to erase the object, core and executable files.

☞ If submitting in batch, use the sbatch batch.sh command. This includes a sequential

and parallel execution on 2, 4, 6 and 8 threads. Be careful, the monoprocessor and

parallel executables must be generated before. You may use the squeue -u $USER

command to follow the evolution of the submitted job. When the job finishes

normally, the result of the execution will be in a file whose name is suffixed with

.res.

☞ Use the make visu command to generate and display the acceleration curve

corresponding to the result of the execution stored in the .res file.

INSTITUT DU DÉVELOPPEMENT

ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.9 – October 2019
J. Chergui, J. Gaidamour, R. Lacroix & P.-Fr. Lavallée

Hands-on exercises : Introduction 4

General instructions for the hands-on exercises

For each exercise, you must :

1. Analyse the status of the variables and parallelize the code by using the

OpenMP directives.

2. Analyse the code performance on 2, 4, 6 and 8 threads compared to a sequential

execution (submit in batch using the batch.sh file).

3. Plot the acceleration curves obtained.

INSTITUT DU DÉVELOPPEMENT

ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.9 – October 2019
J. Chergui, J. Gaidamour, R. Lacroix & P.-Fr. Lavallée

Hands-on exercises : Introduction 5

Good luck !

INSTITUT DU DÉVELOPPEMENT

ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.9 – October 2019
J. Chergui, J. Gaidamour, R. Lacroix & P.-Fr. Lavallée

Instructions for hands-on exercises : Ex.0 6

2 – Ex.0 : Hello World

In this very simple exercise, you need to :

1. Write an OpenMP program displaying the number of threads used for the

execution and the rank of each of the threads.

2. Compile the code manually to create a monoprocessor executable and a parallel

executable.

3. Test the programs obtained with different numbers of threads for the parallel

program, without submitting in batch.

Output example for the parallel program with 4 threads :

Hello from the rank 2 thread

Hello from the rank 1 thread

Hello from the rank 3 thread

Hello from the rank 0 thread

Parallel execution of hello_world with 4 threads

INSTITUT DU DÉVELOPPEMENT

ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.9 – October 2019
J. Chergui, J. Gaidamour, R. Lacroix & P.-Fr. Lavallée

Instructions for hands-on exercises : Ex.1 7

3 – Ex.1 : matrix product

The code contained in the prod mat.f90 file calculates the matrix product :

C = A×B

In this exercise, you must :

1. Insert the appropriate OpenMP directives and analyse the code performance.

2. Test the loop iteration repartition modes (STATIC, DYNAMIC, GUIDED) and

vary the chunk sizes.

INSTITUT DU DÉVELOPPEMENT

ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.9 – October 2019
J. Chergui, J. Gaidamour, R. Lacroix & P.-Fr. Lavallée

Instructions for hands-on exercises : Ex.1 8

Nb. of threads Elapsed time Speedup

mono

1

2

4

6

8

1 2 4 6 8
Nombre de threads

1

2

3

4

5

6

7

8

Ac
cé
lé
ra
tio

n

Accélération TP1 - Produit de matrices - Ada

Accélération OpenMP
Accélération idéale

INSTITUT DU DÉVELOPPEMENT

ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.9 – October 2019
J. Chergui, J. Gaidamour, R. Lacroix & P.-Fr. Lavallée

Instructions for hands-on exercises : Ex.2 9

4 – Ex.2 : Jacobi method

The program, contained in the jacobi.f90 file, solves a general linear system

A× x = b

using the Jacobi iterative method.

In this exercice, you must solve the system in parallel.

INSTITUT DU DÉVELOPPEMENT

ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.9 – October 2019
J. Chergui, J. Gaidamour, R. Lacroix & P.-Fr. Lavallée

Instructions for hands-on exercises : Ex.2 10

Nb. of threads Elapsed time Speedup

mono

1

2

4

6

8

1 2 4 6 8
Nombre de threads

1

2

3

4

5

6

7

8

Ac
cé
lé
ra
tio

n

Accélération TP2 − Jacobi - Ada

Accélération OpenMP
Accélération idéale

INSTITUT DU DÉVELOPPEMENT

ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.9 – October 2019
J. Chergui, J. Gaidamour, R. Lacroix & P.-Fr. Lavallée

Instructions for hands-on exercises : Ex.3 11

5 – Ex.3 : Calculation of π

The aim of this exercise is to calculate π by numerical integration knowing that :∫ 1

0
4

1+x2 dx = π

The pi.f90 file contains the program for calculating the value of π by the rectangle

method (mid-point). Let f(x) = 4
1+x2 be the function to integrate, N and h = 1

N

(respectively) the number of points, and the discretization width on the integration

interval [0, 1].

This exercice can be parallelized in three different ways (i.e. using different OpenMP

directives for each version). Analyse the performance of the three codes, then optimise

the least efficient versions (without changing the type of OpenMP directives used), in

order to obtain the same performance for the three parallelized versions.

INSTITUT DU DÉVELOPPEMENT

ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.9 – October 2019
J. Chergui, J. Gaidamour, R. Lacroix & P.-Fr. Lavallée

Instructions for hands-on exercises : Ex.3 12

Nb. of threads Elapsed time Speedup

seq.

1

2

4

6

8

1 2 4 6 8
Nombre de threads

1

2

3

4

5

6

7

8

Ac
cé
lé
ra
tio

n

Accélération TP3 − Approximation n mériq e d calc l de pi - Ada

Accélération OpenMP
Accélération idéale

INSTITUT DU DÉVELOPPEMENT

ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.9 – October 2019
J. Chergui, J. Gaidamour, R. Lacroix & P.-Fr. Lavallée

Instructions for hands-on exercises : Ex.4 13

6 – Ex.4 : The conjugate gradient method

The program contained in the gradient conjugue.f90 file solves a symmetric linear

system

A× x = b

using the preconditioned conjugate gradient method. In Fortran, this program can be

parallelized primarily by using the WORKSHARE constructions.

1. After introducing the appropriate OpenMP directives, analyse the code

performance.

2. What are your conclusions about the effectiveness of the WORKSHARE

directive ?

3. Optimise the parallel version of the code by slightly modifying the source code in

order to avoid using the WORKSHARE directive in places where it is

problematic.

INSTITUT DU DÉVELOPPEMENT

ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.9 – October 2019
J. Chergui, J. Gaidamour, R. Lacroix & P.-Fr. Lavallée

Instructions for hands-on exercises : Ex.4 14

Nb. of threads Elapsed time Speedup

seq.

1

2

4

6

8

1 2 4 6 8
Nombre de threads

1

2

3

4

5

6

7

8

Ac
cé
lé
ra
tio

n

Accélération TP4 − Gradient Conjugué - Ada

Accélération OpenMP
Accélération OpenMP opt.
Accélération idéale

INSTITUT DU DÉVELOPPEMENT

ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.9 – October 2019
J. Chergui, J. Gaidamour, R. Lacroix & P.-Fr. Lavallée

Instructions for hand-on exercises : Ex.5 15

7 – Ex.5 : Reduction of an array

The program contained in the reduction tab.f90 file is extracted from a chemistry code.

It reduces a three-dimensional array into a vector. The aim of this exercise is to

parallelize this calculation kernel without changing the loop order in the provided code

(i.e. k,j,i).

1. Analyse the data-sharing attributes of the variables and adapt the source code so

that the K outermost loop is parallelized.

2. Compare the performance obtained by using the thread/core binding default

execution on Ada and by using scatter binding. Suggest an explanation for the

poor performance of the latter.

3. Optimise the source code for the scatter mode with taking into account the

memory affinity. Why does this third series of executions give the best

performance ?

INSTITUT DU DÉVELOPPEMENT

ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.9 – October 2019
J. Chergui, J. Gaidamour, R. Lacroix & P.-Fr. Lavallée

Instructions for hand-on exercises : Ex.5 16

Nb. of threads Elapsed time Speedup

seq.

1

2

4

6

8

1 2 4 6 8
Nombre de threads

1

2

3

4

5

6

7

8

Ac
cé
lé
ra
ti

n

Accélérati n TP5 − Réducti n d'un tableau - Ada

Accélération OpenMP
Accélération OpenMP (mode scatter)
Accélération OpenMP (mode scatter + first touch)
Accélération idéale

INSTITUT DU DÉVELOPPEMENT

ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.9 – October 2019
J. Chergui, J. Gaidamour, R. Lacroix & P.-Fr. Lavallée

Instructions for hands-on exercises : Ex.6 17

8 – Ex.6 : Multiple Fast Fourier Transform

The program contained in the fft.f90 file com-

putes the real-to-complex forward and inverse

FFT of an x 3D matrix. The parallelization is

carried out by explicit job distribution by sli-

cing the x array in the 3rd dimension with as

many slices as there are threads. Each thread

then applies the FFT on its assigned slice, inde-

pendently of the others.
Xnx

nz

ny
z_

tra
nc

he
INSTITUT DU DÉVELOPPEMENT

ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.9 – October 2019
J. Chergui, J. Gaidamour, R. Lacroix & P.-Fr. Lavallée

Instructions for hands-on exercises : Ex.6 18

1. Insert the appropriate OpenMP directives into the fft.f90 file (use conditional

compilation to allow for an eventual sequential execution).

2. Analyse the code performance and plot the speedup curves obtained.

3. Do the same for the scatter thread/core binding mode. Why do we observe a

better performance without even having to modify the source code ?

Comment : The FFT libjmfft.a library must not be modified.

It contains references to the scfftm and csfftm

subroutines used by the principal program.

INSTITUT DU DÉVELOPPEMENT

ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.9 – October 2019
J. Chergui, J. Gaidamour, R. Lacroix & P.-Fr. Lavallée

Instructions for hands-on exercises : Ex.6 19

Nb. of threads Elapsed time Speedup

seq.

1

2

4

6

8

1 2 4 6 8
Nombre de th eads

1

2

3

4

5

6

7

8

9

Ac
cé

lé
 a

tio
n

Accélé ation TP6 − FFT - Ada

Accélération OpenMP
Accélération OpenMP (mode scatter)
Accélération idéale

INSTITUT DU DÉVELOPPEMENT

ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.9 – October 2019
J. Chergui, J. Gaidamour, R. Lacroix & P.-Fr. Lavallée

Instructions for hands-on exercises : Ex.7 20

9 – Ex.7 : The BiConjugate Gradient Stabilized method

The principal program, contained in the principal.f90 file, calls the bi-cgstab subroutine

defined in the bi-cgstab.f90 file, to solve a linear system with multiple right-hand sides

A× x = b

using the BiConjugate Gradient Stabilized method (Bi-CGSTAB).

1. Insert the appropriate OpenMP directives into the principal.f90 and bi-cgstab.f90

files by considering the bi-cgstab subroutine as orphan.

2. Analyse the code performance and plot the speedup curves obtained.

INSTITUT DU DÉVELOPPEMENT

ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.9 – October 2019
J. Chergui, J. Gaidamour, R. Lacroix & P.-Fr. Lavallée

Instructions for hands-on exercises : Ex.7 21

Nb. of threads Elapsed time Speedup

seq.

1

2

4

6

8

1 2 4 6 8
Nombre de th eads

1

2

3

4

5

6

7

8

Ac
cé

lé
 a

tio
n

Accélé ation TP7 − Bi-CGStab - Ada

Accélération OpenMP
Accélération idéale

INSTITUT DU DÉVELOPPEMENT

ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.9 – October 2019
J. Chergui, J. Gaidamour, R. Lacroix & P.-Fr. Lavallée

Instructions for hands-on exercises : Ex.8 22

10 – Ex.8 : Poisson

The poisson.f90 and gradient conjugue.f90 files (here extended to the solution of

multiple independent linear systems) allows resolving the Poisson (1) equation for

which the analytical solution ua(x, y) is given as :

ua(x, y) = cosπx× sinπy ; (x, y) ∈ [0, 1]× [0, 1]

−
∂2u
∂x2 −

∂2u
∂y2

= b(x, y)

u(0, y) = ua(0, y)

u(1, y) = ua(1, y)

u(x, 0) = ua(x, 0)

u(x, 1) = ua(x, 1)

(1)

INSTITUT DU DÉVELOPPEMENT

ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.9 – October 2019
J. Chergui, J. Gaidamour, R. Lacroix & P.-Fr. Lavallée

Instructions for hands-on exercises : Ex.8 23

The numerical method adopted is mixed. We will apply a method of finite differences

centered in the x direction followed by a sine FFT in the y direction. For this, let ũ and

b̃ represent, respectively, the sine FFT of u and b with respect to y and apply this FFT

to Poisson’s (1) equation which becomes :

−
∂2ũ

∂x2
−

∂̃2u

∂y2
= b̃(x, y)

The sine transform ∂̃2u
∂y2

of the ∂2u
∂y2

operator is a diagonal operator of which the

elements represent the eigenvalues of the associated matrix obtained by finite

differences of the operator in question. These eigenvalues are analytically known (which

is the beauty of this method). If j = 1, . . . , Nj represents the index of the discretization

point and hy designates the discretization width in the y direction, these eigenvalues are

expressed according to the following formula :

vpj =
4

h2
y

sin2
π(j − 1)

2(Nj − 1)
; j = 2, . . . , Nj − 1

INSTITUT DU DÉVELOPPEMENT

ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.9 – October 2019
J. Chergui, J. Gaidamour, R. Lacroix & P.-Fr. Lavallée

Instructions for hands-on exercises : Ex.8 24

Therefore, in the eigenvector basis, solving Poisson’s equation is equivalent to solving

Nj − 2 independant symmetric tridiagonal systems (use the conjugate gradient

algorithm), each of size (Ni − 2)× (Ni − 2) where Ni represents the number of

discretization points in the x direction :

dj −cx 0 0

−cx dj −cx 0 . . .
...

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
... 0 −cx dj −cx

0 0 −cx dj

ũ2,j

ũ3,j

...

...

ũNi−2,j

ũNi−1,j

=

b̃2,j +CL

b̃3,j
...
...

b̃Ni−2,j

b̃Ni−1,j +CL

where cx = 1
h2
x
, cy = 1

h2
y
, dj = 2cx + vpj and hx is the width discretization in the x

direction. The term CL contains the contribution of the boundary conditions.

Finally, (Ni − 2) independent inverse FFT of ũ with respect to y allows computing the

final solution u in the canonical basis.

INSTITUT DU DÉVELOPPEMENT

ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.9 – October 2019
J. Chergui, J. Gaidamour, R. Lacroix & P.-Fr. Lavallée

Instructions for hands-on exercises : Ex.8 25

1. Insert the appropriate OpenMP directives in the poisson.f90 and

gradient conjugue.f90 files by considering the gradient conjugue subroutine as

orphan and using only one parallel region.

2. Analyse the code performance and plot the speedup curves obtained.

3. Repeat this but use the DYNAMIC distribution mode of the iterations. Propose

an explanation for the difference in performance observed.

Note : The c06haf.o file must not be modified. It contains the reference

to the c06haf subroutine (it carries out the FFT in sinus and its inverse)

called in the poisson.f90 file.

INSTITUT DU DÉVELOPPEMENT

ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.9 – October 2019
J. Chergui, J. Gaidamour, R. Lacroix & P.-Fr. Lavallée

Instructions for hands-on exercises : Ex.8 26

Nb. of threads Elapsed time Speedup

seq.

1

2

4

6

8

1 2 4 6 8
Nombre de th eads

1

2

3

4

5

6

7

8

Ac
cé

lé
 a

tio
n

Accélé ation TP8 − Poisson - Ada

Accélération OpenMP
Accélération OpenMP (scheduling dynamique)
Accélération idéale

INSTITUT DU DÉVELOPPEMENT

ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.9 – October 2019
J. Chergui, J. Gaidamour, R. Lacroix & P.-Fr. Lavallée

Instructions for hands-on exercises : Ex.9 27

11 – Ex.9 : Loop nest with dependencies

The code, stored in the dependance.f90 file, contains two nested loops.

In this exercice, you must :

1. Determine if the loops are parallel loops (i.e. no dependencies between

iterations). If you force parallelization of the loops, what happens ?

2. Parallelize the code by inserting the appropriate OpenMP directives into the

dependance.f90 file. Two approaches are possible, either with the flush or by

using the OpenMP tasks. The difficulty of this exercise lies in correctly

synchronising the various threads in a way which respects the dependencies

between the iterations.

3. Analyse the code performance and plot the speedup curves obtained. Attention,

the parallel version of the code is only valid if the value displayed on the screen

for the variable norm equals 0.

INSTITUT DU DÉVELOPPEMENT

ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.9 – October 2019
J. Chergui, J. Gaidamour, R. Lacroix & P.-Fr. Lavallée

Instructions for hands-on exercises : Ex.9 28

Nb. of threads Elapsed time Speedup

seq.

1

2

4

6

8

1 2 4 6 8
Nombre de hreads

1

2

3

4

5

6

7

8

Ac
cé

lé
ra

 io
n

Accéléra ion TP9 − Boucles avec dépendance - Ada

Accélération OpenMP
Accélération idéale

INSTITUT DU DÉVELOPPEMENT

ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.9 – October 2019
J. Chergui, J. Gaidamour, R. Lacroix & P.-Fr. Lavallée

Instructions for hands-on exercises : Ex.10 29

12 – Ex.10 : Matrix product by the Strassen algorithm

The code, contained in the strassen.F90 file, calculates the matrix product :

C = A×B

by using Strassen’s recursive algorithm.

In this exercise, you must :

1. Analyse and parallelize the code by using OpenMP tasks.

2. Measure the code performance and plot the speedup curves obtained.

INSTITUT DU DÉVELOPPEMENT

ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.9 – October 2019
J. Chergui, J. Gaidamour, R. Lacroix & P.-Fr. Lavallée

Instructions for hands-on exercises : Ex.10 30

Nb. of threads Elapsed time Speedup

seq.

1

2

4

6

8

1 2 4 6 8
Nombre de hreads

1

2

3

4

5

6

7

8

Ac
cé

lé
ra

 io
n

Accéléra ion TP10 − S rassen - Ada

Accélération OpenMP
Accélération idéale

INSTITUT DU DÉVELOPPEMENT

ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE

OpenMP – V. 2.9 – October 2019
J. Chergui, J. Gaidamour, R. Lacroix & P.-Fr. Lavallée

	Introduction
	Ex.0: Hello World
	Ex.1 : matrix product
	Ex.2 : Jacobi method
	Ex.3 : Calculation of
	Ex.4 : The conjugate gradient method
	Ex.5: Reduction of an array
	Ex.6 : Multiple Fast Fourier Transform
	Ex.7: The BiConjugate Gradient Stabilized method
	Ex.8: Poisson
	Ex.9 : Loop nest with dependencies
	Ex.10: Matrix product by the Strassen algorithm

