

Deep Learning Optimized on Jean Zay

Optimization of the data preprocessing

IDRIS

Optimization of the data preprocessing

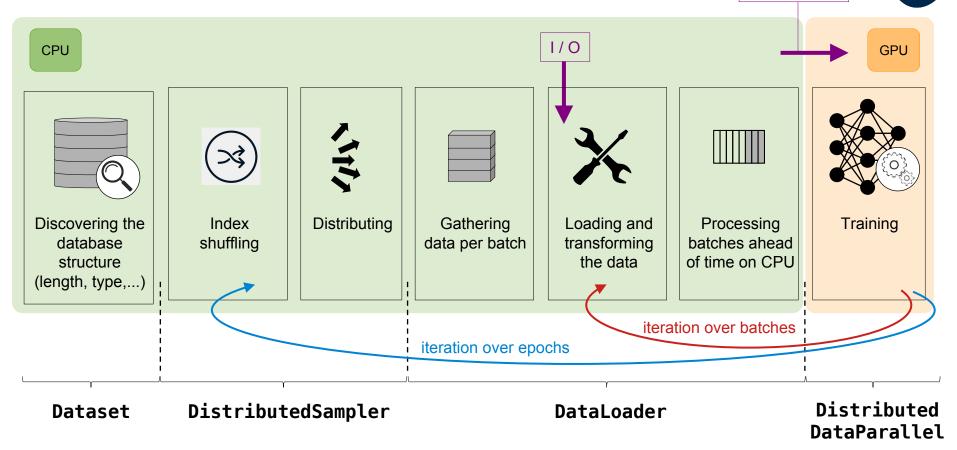
Data preprocessing with DataLoader <

Optimization of the DataLoader <

Data preprocessing with DataLoader

CPU to GPU

transfers



Data preprocessing with DataLoader

DataLoader (data preprocessing)

```
from torch.utils.data import DataLoader
data loader = DataLoader(dataset,
                         batch size=batch size,
                         num workers=<int>,
                         persistent_workers=<bool>,
                         prefetch factor=<int>,
                         pin memory=<bool>,
                         drop last=<bool>
```

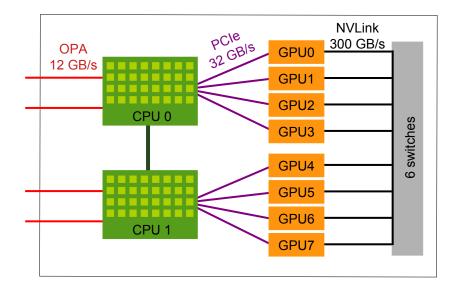

Optimization of the data preprocessing

Data preprocessing with DataLoader <

Optimization of the DataLoader <

Optimization of the DataLoader

• Crucial points regarding the performance of data preprocessing:



Node 8 × A100 80Go

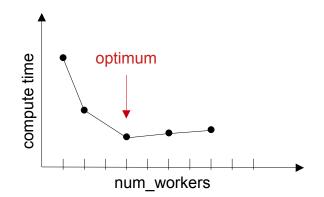
1. Loading the data in memory and transforming it on the CPU

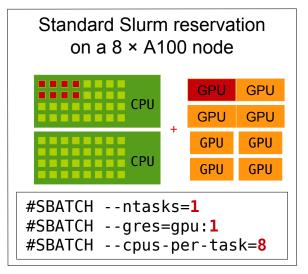
2. Data transfers from CPU to GPU

- 1. Loading the data in memory and transforming it on the CPU
 - num_workers allows us to define the number of processes (CPU cores) which will work in parallel to preprocess the data on the CPU.

Compute time speedup on CPU.

The multiprocessing environment which is created occupies some space in the CPU RAM.

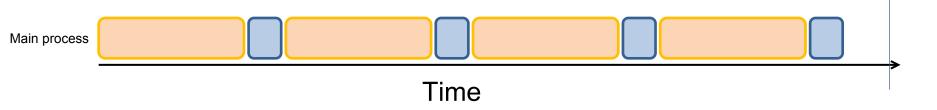




num_worker = 0

DataLoader

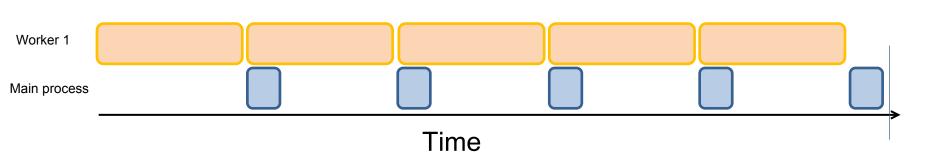
Forward/Backward

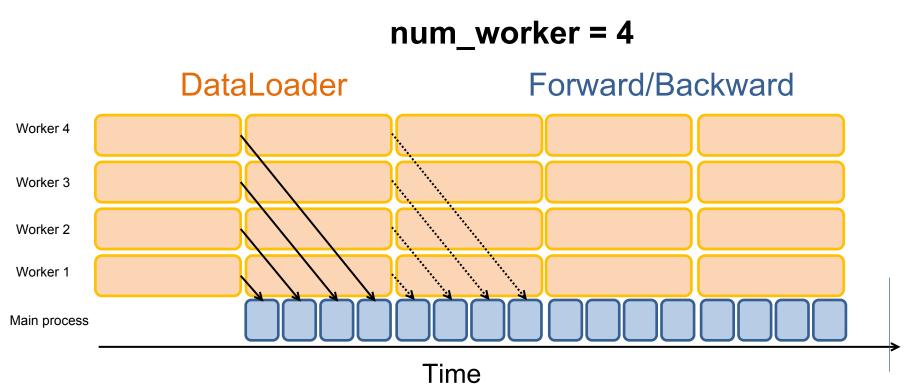


num_worker = 1

DataLoader

Forward/Backward





- 1. Loading the data in memory and transforming it on the CPU
 - num_workers allows us to define the number of processes (CPU cores) which will work in parallel to preprocess the data on the CPU.
 - **persistent_workers=True** allows us to maintain the active processes throughout the training.

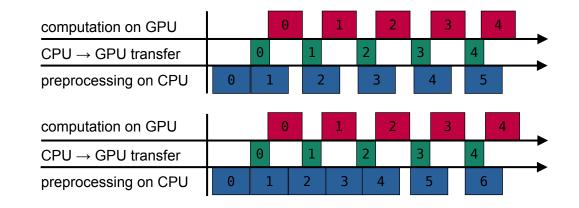
Time gain: We avoid reinitializing the processes at each epoch.

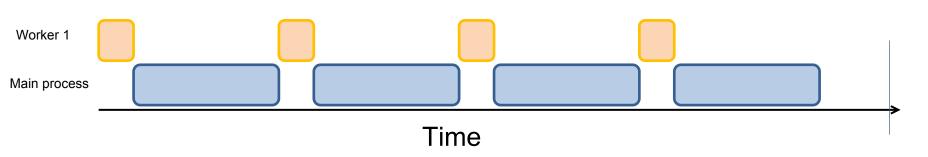
Usage of the CPU RAM (can become an issue if multiple DataLoaders are used).

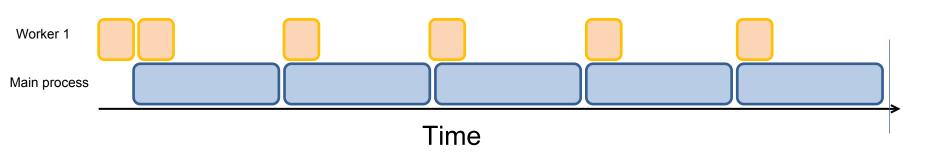
- 1. Loading the data in memory and transforming it on the CPU
 - **prefetch_factor** allows us to define the maximum number of batches the CPU can preprocess in advance.
 - Prevents GPU inactivity if CPU occasionally struggles
 Usage of the CPU RAM

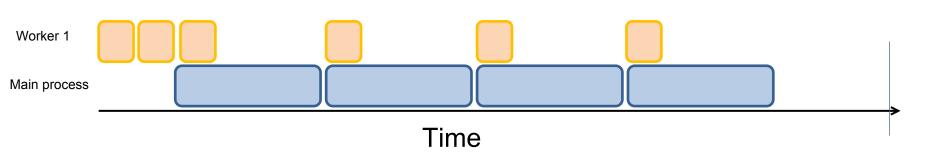
prefetch_factor = 1

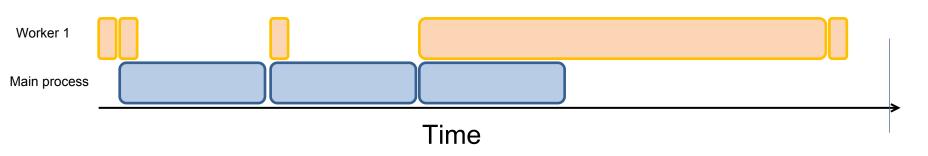
prefetch_factor = 2

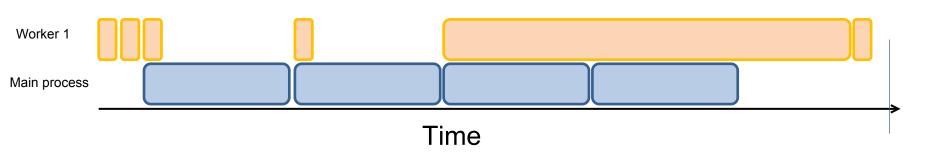


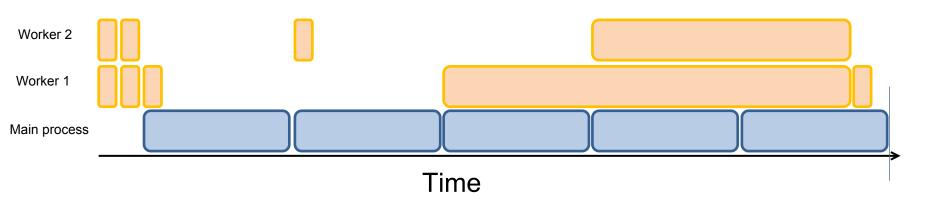








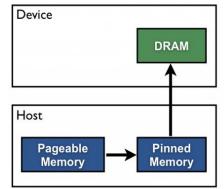




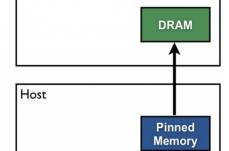
- 2. Data transfers from CPU to GPU
 - **pin_memory=True** allows storing batches directly in pinned memory.

Speedup of CPU/GPU transfers

Slows CPU memory management



Pageable Data Transfer



pin_memory=True

Device

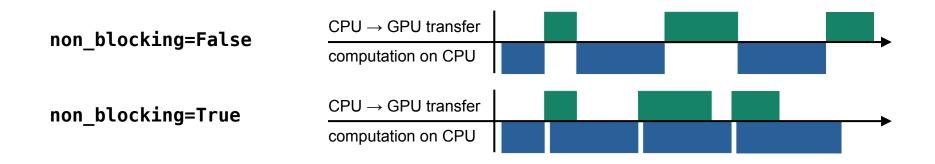
Pinned Data Transfer

https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/

pin_memory=False

cnrs

- 2. Data transfers from CPU to GPU
 - **pin_memory=True** allows storing batches in pinned memory.
 - Storing on pinned memory allows activating the **asynchronism** mechanism during the transfers of CPU to GPU : data = data.to(gpu, **non_blocking=True**).
 - Usage of the CPU RAM (intermediate memory buffers).



- Other DataLoader option:
 - **drop_last=True** allows us to ignore the last samples if the size of the dataset is not a multiple of the number of batches.

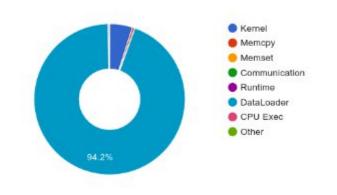
The workload per process is balanced.

We avoid the cost of treating an incomplete batch.

Loss of information?

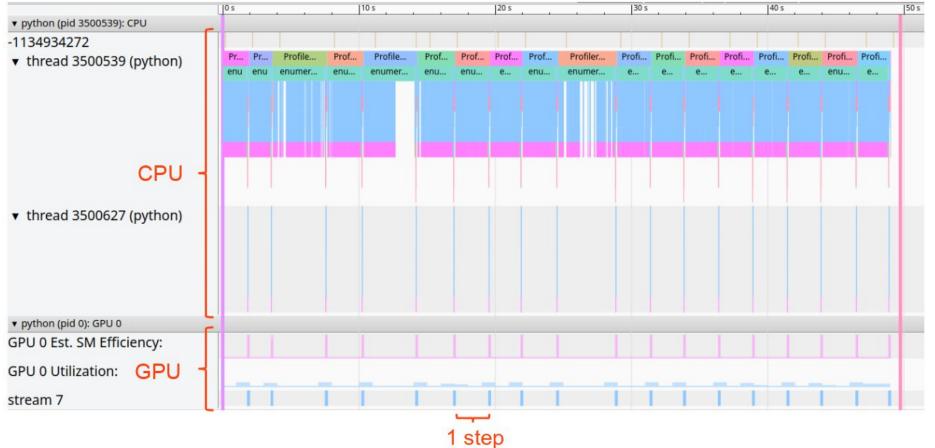
• Measure the time gain on a few steps.

TP2_1: Profiler PyTorch (conclusion)

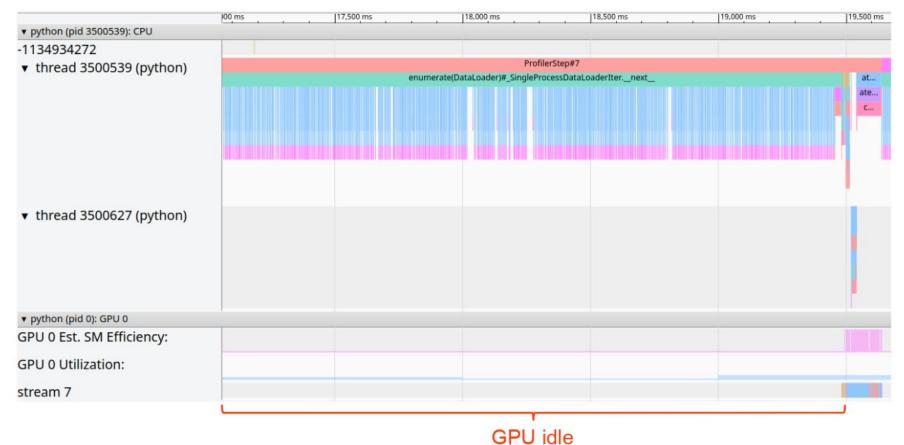


After seeing the traces, it is obvious that the optimization efforts need to concentrate on the DataLoader.

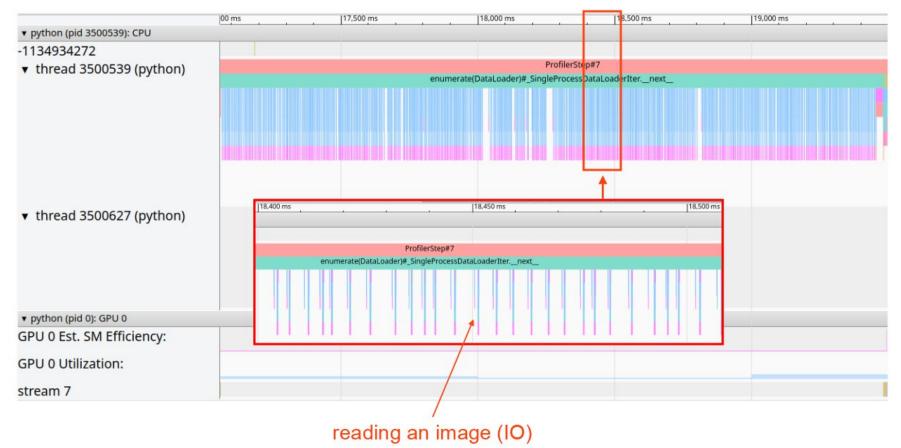
TP2_2: Profiler Trace



TP2_2: Profiler Trace (1 step)



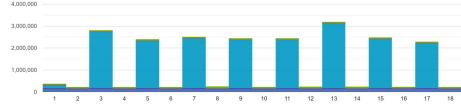
TP2_2: Profiler Trace (1 step - CPU)

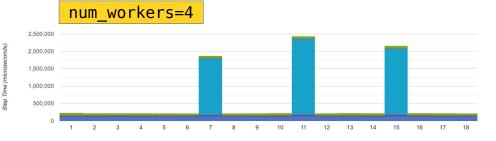


• The most efficient optimization is the increase of num_workers.

Communication

Memset





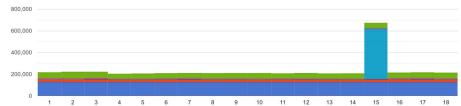
Memcpy

Kernel

num workers=8

DataLoader

Runtime



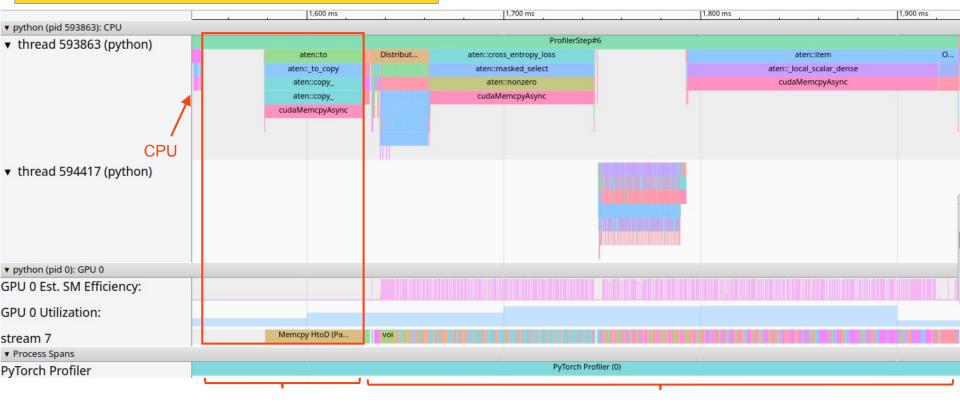
num_workers=2

CNIS

Intermediate conclusion about num_workers setting:

- Increase num_workers progressively and observe if the DataLoader scales or not on a few steps.
- For low CPU workload, num_workers can be a multiple of cpus-per-task.
- Setting too many workers creates bottlenecks or Out Of Memory failures.
- Be aware that few steps are not completely representative.
- IOs on Jean Zay are erratic.

pin_memory=False, non_blocking=False



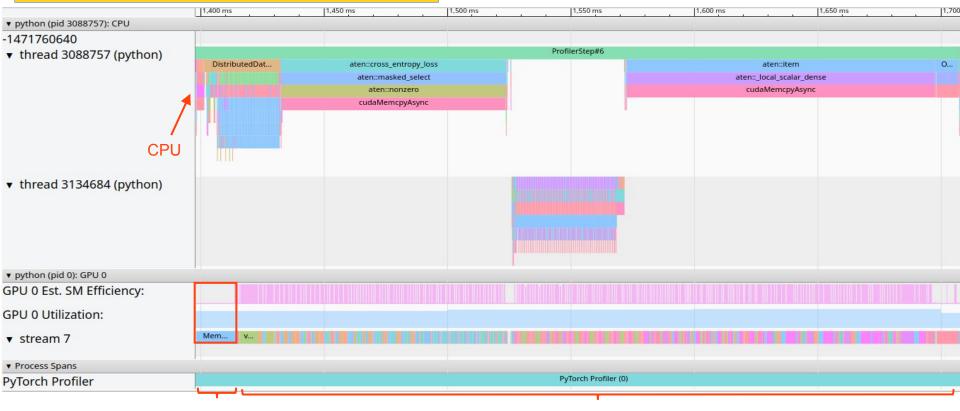
 $CPU \rightarrow GPU$ transfer

pin_memory=True, non_blocking=False

 $\text{CPU} \rightarrow \text{GPU transfer}$

GPU

pin_memory=True, non_blocking=True

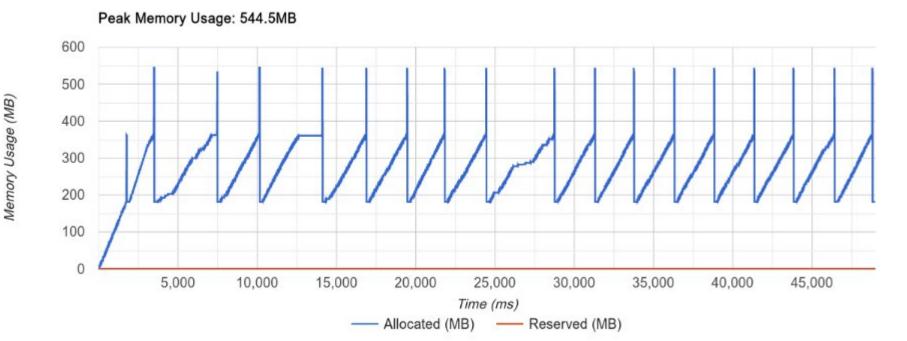


Chosen optimizations:

num_wokers = 16
persistent_workers = True
pin_memory = True
non_blocking = True
prefetch_factor = 2

Configuration GPU Summary (2)			Execution Summary					
Number of Worker(s) Device Type	1 GPU	GPU 0:	Category	Time Duration (us)	Percentage (%)		Kernel	
			VIDIA A100-SXM4-80GB 79.15 GB 8.0 86.84 % 85.55 % 32.15 %	Average Step Time	142,633	100		Memcpy
		Memory		Kernel	123,861	86.84		Memset
		Compute Capability		Memcpy	9,311	6.53		Commun
		GPU Utilization		Memset	558	0.39		Runtime
		Est. SM Efficiency		Communication	39	0.03		DataLoad CPU Exe
		Est. Achieved Occupancy 32.15 %		Runtime	0	0		Other
			DataLoader	327	0.23	86.8%		
			CPU Exec	3,862	2.71			
				Other	4,675	3.28		

Device CPU 🚽



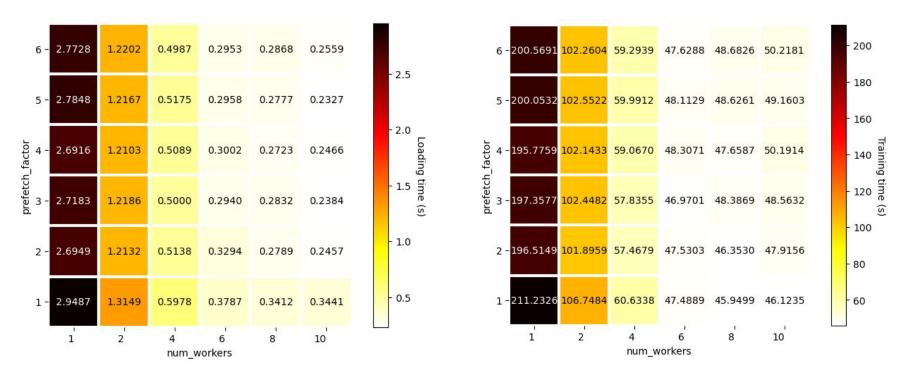
33

Appendix: Optimization of the DataLoader

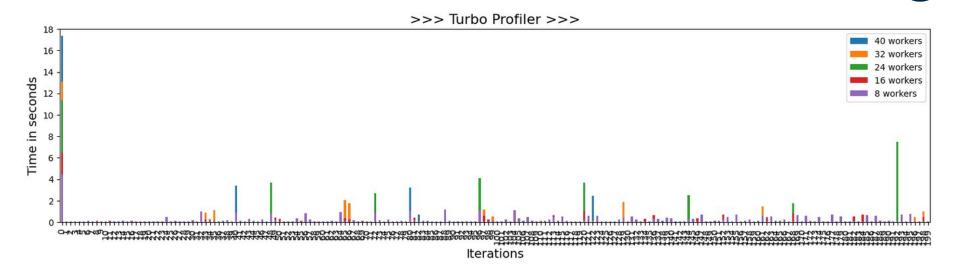
Impact of the prefetch factor

dlojz.py - 50 iterations - test partition gpu_p4

NB: These results don't correspond to our usage case but still illustrate the influence of the parameters.



Appendix: Optimization of the DataLoader (resnet 50)



	jobid	num_workers	persistent_workers	pin_memory	non_blocking	prefetch_factor	drop_last	loading_time	training_time
1	830199	16	False	False	False	2	False	0.140631	81.492809s
3	830217	32	False	False	False	2	False	0.145662	146.490717s
4	830224	40	False	False	False	2	False	0.147003	150.194498s
2	830213	24	False	False	False	2	False	0.200591	151.584189s
0	830180	8	False	False	False	2	False	0.204219	87.450866s