
1

Deep Learning Optimized on Jean Zay
Optimization of the data preprocessing

IDRIS



2

Optimization of the data
preprocessing

Data preprocessing with DataLoader ◂

Optimization of the DataLoader ◂



3

Discovering the
database
structure

(length, type,...)

I / O

Index
shuffling

Distributing Gathering
data per batch

Loading and
transforming

the data

Processing
batches ahead
of time on CPU

Training

CPU GPU

Dataset DistributedSampler DataLoader Distributed
DataParallel

Data preprocessing with DataLoader CPU to GPU
transfers

iteration over epochs
iteration over batches



4

from torch.utils.data import DataLoader

data_loader = DataLoader(dataset,
batch_size=batch_size,
num_workers=<int>,
persistent_workers=<bool>,
prefetch_factor=<int>,
pin_memory=<bool>,
drop_last=<bool>
)

● DataLoader (data preprocessing)

Data preprocessing with DataLoader



5

Optimization of the data
preprocessing

Data preprocessing with DataLoader ◂

Optimization of the DataLoader ◂



6

1. Loading the data in memory and
transforming it on the CPU

2. Data transfers from CPU to GPU

• Crucial points regarding the performance of data preprocessing:

Optimization of the DataLoader

NVLink
300 GB/sPCIe

32 GB/sOPA
12 GB/s

GPU1
GPU0

GPU3
GPU2

GPU5
GPU4

GPU7
GPU6

6
sw

itc
he

sCPU 0

CPU 1

Node 8 × A100 80Go



7

1. Loading the data in memory and transforming it on the CPU

• num_workers allows us to define the number of processes (CPU cores) which will
work in parallel to preprocess the data on the CPU.

Compute time speedup on CPU.

The multiprocessing environment which is
created occupies some space in the CPU RAM.

co
m

pu
te

tim
e

num_workers

optimum

Optimization of the DataLoader

#SBATCH --ntasks=1
#SBATCH --gres=gpu:1
#SBATCH --cpus-per-task=8

Standard Slurm reservation
on a 8 × A100 node

GPU GPU
GPU GPU
GPU GPU
GPU GPU

CPU

CPU

+



8
8

DataLoader Forward/Backward

Time

num_worker = 0

Optimization of the DataLoader

Main process



9
9

DataLoader Forward/Backward

Time

num_worker = 1

Optimization of the DataLoader

Main process

Worker 1



10
10

DataLoader Forward/Backward

Time

num_worker = 4

Optimization of the DataLoader

Main process

Worker 1

Worker 2

Worker 3

Worker 4



11

1. Loading the data in memory and transforming it on the CPU

• num_workers allows us to define the number of processes (CPU cores) which will
work in parallel to preprocess the data on the CPU.

• persistent_workers=True allows us to maintain the active processes
throughout the training.

Time gain: We avoid reinitializing the processes at each epoch.

Usage of the CPU RAM (can become an issue if multiple DataLoaders are used).

Optimization of the DataLoader



12

1. Loading the data in memory and transforming it on the CPU

● prefetch_factor allows us to define the maximum number of batches the CPU can
preprocess in advance.

Prevents GPU inactivity if CPU occasionally struggles
Usage of the CPU RAM

prefetch_factor = 1

prefetch_factor = 2

Optimization of the DataLoader

0

0

computation on GPU

preprocessing on CPU
CPU → GPU transfer

computation on GPU

preprocessing on CPU
CPU → GPU transfer

1 2

1 2 3

3 4

0 1 2 3

0

0 1 2

1 2 3

3 4

0 1 2 3

5 6

4

4

4

4

5



13
13

DataLoader Forward/Backward

Time

num_workers = 1, prefetch_factor = None

Optimization of the DataLoader

Main process

Worker 1



14
14

DataLoader Forward/Backward

Time

num_workers = 1, prefetch_factor = 1

Optimization of the DataLoader

Main process

Worker 1



15
15

DataLoader Forward/Backward

Time

num_workers = 1, prefetch_factor = 2

Optimization of the DataLoader

Main process

Worker 1



16
16

DataLoader Forward/Backward

Time

num_workers = 1, prefetch_factor = 1

Optimization of the DataLoader

Main process

Worker 1



17
17

DataLoader Forward/Backward

Time

num_workers = 1, prefetch_factor = 2

Optimization of the DataLoader

Main process

Worker 1



18
18

DataLoader Forward/Backward

Time

num_workers = 2, prefetch_factor = 2

Optimization of the DataLoader

Main process

Worker 1

Worker 2



19

2. Data transfers from CPU to GPU

• pin_memory=True allows storing batches directly in pinned memory.

Speedup of CPU/GPU
transfers

Slows CPU memory
management

pin_memory=True

https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/

pin_memory=False

Optimization of the DataLoader



20

2. Data transfers from CPU to GPU

• pin_memory=True allows storing batches in pinned memory.

Storing on pinned memory allows activating the asynchronism mechanism during
the transfers of CPU to GPU : data = data.to(gpu, non_blocking=True).

Usage of the CPU RAM (intermediate memory buffers).

CPU → GPU transfer
computation on CPU

CPU → GPU transfer
computation on CPU

non_blocking=False

non_blocking=True

Optimization of the DataLoader



21

• Other DataLoader option:

• drop_last=True allows us to ignore the last samples if the size of the dataset is not
a multiple of the number of batches.

The workload per process is balanced.

We avoid the cost of treating an incomplete batch.

Loss of information?

Optimization of the DataLoader



22

● Modify the DataLoader options.
● Measure the time gain on a few steps.

TP2_3: Optimization of the DataLoader



23

TP2_1: Profiler PyTorch (conclusion)

After seeing the traces, it is obvious that the optimization
efforts need to concentrate on the DataLoader.



24

TP2_2: Profiler Trace



25

TP2_2: Profiler Trace (1 step)



26

TP2_2: Profiler Trace (1 step - CPU)



27

• The most efficient optimization is the increase of num_workers.

num_workers=0

num_workers=4

num_workers=2

num_workers=8

TP2_1: Optimization of the DataLoader



28

TP2_1: Optimization of the DataLoader

Intermediate conclusion about num_workers setting:

● Increase num_workers progressively and observe if the DataLoader scales or not on a
few steps.
● For low CPU workload, num_workers can be a multiple of cpus-per-task.
● Setting too many workers creates bottlenecks or Out Of Memory failures.
● Be aware that few steps are not completely representative.
• IOs on Jean Zay are erratic.



29CPU → GPU transfer GPU

CPU

TP2_1: Optimization of the DataLoader
pin_memory=False, non_blocking=False



30

CPU

TP2_1: Optimization of the DataLoader

CPU → GPU transfer GPU

pin_memory=True, non_blocking=False



31

CPU

pin_memory=True, non_blocking=True

TP2_1: Optimization of the DataLoader

CPU → GPU transfer GPU



32

• Chosen optimizations:
num_wokers = 16
persistent_workers = True
pin_memory = True
non_blocking = True
prefetch_factor = 2

TP2_1: Optimization of the DataLoader



33

Appendix: Profiler Memory View (CPU)



34

● Impact of the prefetch factor
dlojz.py - 50 iterations - test partition gpu_p4
NB: These results don’t correspond to our usage case but still illustrate the influence of the parameters.

Appendix: Optimization of the DataLoader



35

Appendix: Optimization of the DataLoader (resnet 50)

training_time

81.492809s

146.490717s

150.194498s

151.584189s

87.450866s


