
1

Optimized Deep Learning - Jean Zay
Training and large batches



Loss Landscape

2

Loss Landscape ◂

Residual Learning ◂

Initialization ◂



Loss Landscape

3

https://losslandscape.com/

https://losslandscape.com/


Loss Landscape

4

Residual Learning
Since Resnets (2015) ...

https://arxiv.org/pdf/1712.09913.pdf

https://arxiv.org/pdf/1712.09913.pdf


Residual Learning

5

Vanishing Gradient issue
without skip connections

Residual Block
F(x)+x0

Forward

Vani
shin

g Gr
adie

nt

Initial
Layers

Deep
Layers

0

Forward

Gradient / Backward

Initial
Layers

Deep
Layers

No Vanishing Gradient issue
with skip connections



Residual Learning – depth impact

6

ResNet

ResNet -
No Short
without skip connections



7

Residual Learning – width impact

Wide-ResNet-56

Wide-ResNet-56-
No Short
without skip connections

k = channel width coefficient compared to ResNet



Saddle point Problem

8

Saddle point: A gradient close to zero which will make the progression of the model very slow

How do I leave the saddle point?



Model Parameters Initialization

9

• Xavier Initialization
• uniform
• normal

• Kaiming Initialization
• uniform
• normal

The Blessing of Dimensionality :

By default in PyTorch:
• Best initialization algorithm depending

on the type of layer (linear,
convolutional, transform, ...).

• Today, it is no longer necessary to try to
optimize initialization.



Learning Rate Scheduler

10

Learning Rate scheduler ◂

Cyclic scheduler ◂

One Cycle scheduler ◂

ScheduleFree ◂

LR Finder◂



Learning Rate Scheduler

11

Learning rate decay



Learning Rate Scheduler

12

WARMUP for large batches

Goal: gradually increase the learning rate to
avoid the risk of divergence at the start of
learning

Problems: The first iterations have too much effect on the model (significant losses, high
gradients, bias, etc.), a high learning rate can cause strong instability or divergence

Untrusted Gradients



Cyclic Learning Rate Scheduler

13

Paramètres : ● Step_size = x * epoch (2 ≤ x ≤ 10)
● Base_lr -> min convergence value
● max_lr -> max convergence value

Succession of warmups and learning rate decays

Cyclical Learning Rates for Training Neural Networks - Leslie N. Smith 2017

Cycle

Max lr

Min lr

Step size



Cyclic Learning Rate Scheduler

14

SNAPSHOT ENSEMBLES: TRAIN 1, GET M FOR FREEGao Huang, Yixuan Li, Geoff Pleiss



One Cycle Learning Rate

15

One cycle is enough! A disciplined approach to neural network hyper-parameters -
Leslie N. Smith

cosine annealing : Recommandation par FastAIProposition initiale

https://arxiv.org/search/cs?searchtype=author&query=Smith%2C+L+N


One Cycle Learning Rate - Super convergence

16
Faster convergence for equivalent final precision



Learning Rate Finder

17

Goal: Find the optimal learning rate values for your model,
particularly for the maximum value of a cyclic scheduler

Run your model over a few
epochs by increasing its
learning rate

• Start of loss reduction →
Minimal learning rate

• Start of loss variation →
Maximum learning rate



Learning Rate Scheduler

18

Each scheduler has its own settings

import torch.optim as opt

scheduler = opt.lr_scheduler.CyclicLR(optimizer, base_lr=0.01, max_lr=0.1)

for epoch in range(10):
for batch in data_loader:

train_batch(...)
scheduler.step()

import torch.optim as opt

scheduler = opt.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)

for epoch in range(100):
train(...)
validate(...)
scheduler.step()

LR

Epochs5 10 15LR

Iterations5000 10000 15000



The Road Less Scheduled : ScheduleFree

19
https://arxiv.org/pdf/2405.15682
https://github.com/facebookresearch/schedule_free



Gradient Descent
Optimizer

20

SGD ◂
ADAM◂

ADAMW ◂



Optimizer - SGD

21

The optimizer is the algorithm that controls the gradient descent
and the minimum search with the aim of optimizing the learning

time and the final metric.

SGD = Stochastic Gradient Descent
Calculating the Gradient and updating the weights

at each batch

+ Batch size and learning rate adaptable
according to conflicting needs: Exploration to find the best local

minimum Acceleration of gradient descent



SGD with Momentum

22

Goal: Take previous gradients into
consideration for faster gradient descent.

Recommended initial value: 0.9

Momentum coefficient

+ Allows you to converge more quickly
- No guarantee that momentum will take us in the right direction



Momentum type

23

Momentum Nesterov momentum



Why Momentum Works ?

24

https://distill.pub/2017/momentum/

https://distill.pub/2017/momentum/


Adaptive Optimizers

25

Examples :

● AdaGrad,
● AdaDelta,
● RMSprop
● Adam

Rather than controlling the gradient descent
manually with the learning rate...

... We can adapt the learning rate for
each weight of the model according
to the gradient, the gradient2, or the
norm of the weights of the layer!!!

Specialized for larges
batches :

● LARS
● LAMB

SGD (no momentum)
SGD (with momentum)
Adam



Adam

26

Adam : Adaptative moment estimation

Parameters:

β1& β2 = Regression rate (β1 = 0.9 & β2 = 0.999)
ε = Very small value to avoid division by zero

Goal: Adapt the importance of weight updates based on
previous gradients and gradient variability.

First moment : sliding mean

Second moment : sliding non-centered variance

Correction of biases of the
first iterations

Dampens oscillations



Weight decay

27

A neural network that converges and generalizes correctly*
generally has weights that tend to 0. *(neither underfitting nor overfitting)

Distribution of weights during learning:

Beginning

End



Weight decay

28

Preferable to standard L2 regularization defined in loss function
λ : weight decay parameter (between 0 and 0.1)

The weight decay technique, defined in the optimizer, makes it possible to force
the weights to converge towards values close to zero.

Underfitting
(λ too high)

Overfitting
(λ too small or null)

correct Weight decay(λ ideal)



Weight decay and decoupled weight decay

29

Evolution of weight decay:Decoupled weight decay (decoupled frommomentum!!)
• SGD and Adam with weight decay
• SGDW and AdamW with decoupled weightdecay
SGD and SGDW are roughly equivalent inperformance.
However AdamW is noticeably better thanAdam!!

Weight decay Decoupled weight decay

ADAM ADAMW



Optimization of large
batches

30

Large batches issues ◂

Learning Rate Scaling & Batch Schedulers ◂

Large batches optimizers ◂



Large Batches with Data Parallelism

31

Data Parallelism: This parallelism generates very large batches

LARGEBATCH SIZE
Problem: Batch that are too large (> 512) tend to result in
poorer performance

Large BatchBatch

512 1K 2K 4K 8K 16K 32K …



Large Batches

32The larger the batch, the more the model tends to converge towards steep and narrow minima.

On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, Ping Tak Peter Tang

Flat minimum Sharp minimum
Comparison of training a convolutional network with
small batch (SB) and large batch (LB) on CIFAR 10

https://arxiv.org/search/cs?searchtype=author&query=Tang%2C+P+T+P


Large Batches : Learning rate scaling

33

Square root growth of learning rate:

Linear growth of learning rate:

When the size of the global batch is considerably increased, it is often necessary to
scale the learning rate:

N = Number of parallel processes

Optimal: linear growth at first then square root
(recommended by OpenAI)

An Empirical Model of Large-Batch Training
Sam McCandlish, Jared Kaplan, Dario Amodei

N



Batch Size Scheduler

34

=> Alternative to Learning Rate Scheduler
DON’T DECAY THE LEARNING RATE, INCREASE THE BATCH SIZE

High Learning Rate

Low Learning Rate

Large Batch

Small Batch

https://arxiv.org/pdf/1711.00489.pdf
https://arxiv.org/pdf/1711.00489.pdf
https://arxiv.org/pdf/1711.00489.pdf
https://arxiv.org/pdf/1711.00489.pdf
https://arxiv.org/pdf/1711.00489.pdf
https://arxiv.org/pdf/1711.00489.pdf
https://arxiv.org/pdf/1711.00489.pdf
https://arxiv.org/pdf/1711.00489.pdf
https://arxiv.org/pdf/1711.00489.pdf
https://arxiv.org/pdf/1711.00489.pdf
https://arxiv.org/pdf/1711.00489.pdf
https://arxiv.org/pdf/1711.00489.pdf
https://arxiv.org/pdf/1711.00489.pdf
https://arxiv.org/pdf/1711.00489.pdf
https://arxiv.org/pdf/1711.00489.pdf
https://arxiv.org/pdf/1711.00489.pdf
https://arxiv.org/pdf/1711.00489.pdf
https://arxiv.org/pdf/1711.00489.pdf
https://arxiv.org/pdf/1711.00489.pdf
https://arxiv.org/pdf/1711.00489.pdf
https://arxiv.org/pdf/1711.00489.pdf
https://arxiv.org/pdf/1711.00489.pdf


35

Trends :

Flat Minimum Sharp Minimum
- Test Loss + Test Loss

Slow Descent Fast Descent

Small Batch Large Batch

SGD ADAM

Weight Decay w/o W.Decay

Large Batches SGD Adam
Small Batch Large Batch Small Batch Large Batch

Weight
Decay

= 0

= 5e-4

= 0

= 5e-4



Large Batches Optimisers - LARS

36

LARS = “Layer-wise Adaptive Rate Scaling.”

Weight decay

r = Trust ratio
l = layer number Low confidence

Low value of r
High confidence
High value of r

Adaptation of SGD with momentum with the addition of a trust ratio for each layer which depends on the evolution of the layer's gradient

Goal: Adapt the importance of weight updates
based on a trust ratio calculated for each
layer of the network.



Large Batches Optimisers - LAMB

37

Adaptation of ADAM with momentum with the addition of a trust ratio for each layer which depends on the evolution of the layer's gradient
LAMB pour “Layer-wise Adaptive Moments optimizer for Batch training.”

Decoupled weight decay

r = Trust ratio
l = layer number

Goal: Adapt the importance of weight updates
based on a trust ratio calculated for each
layer of the network.

Low confidence
Low value of r

High confidence
High value of r



Optimizer implementation

38

import torch.optim as opt

ADAM_optimizer = opt.AdamW(params, lr=0.001, betas=(0.9, 0.999), weight_decay=0.05,..)

import torch.optim as opt

SGD_optimizer = opt.SGD(params, lr, momentum=0, weight_decay=0, nesterov=False, ...)

from apex.optimizers import FusedLamb

LAMB_optimizer = FusedLamb(params, lr=0.001, betas=(0.9, 0.999), weight_decay=0,adam_w_mode=True)

SGD

ADAMW

LAMB

import torch.optim as opt
from apex.parallel.LARC import LARC

base_optimizer = opt.SGD(params, lr=0.001, momentum=0.9, weight_decay=0)optimizer = LARC(base_optimizer)scheduler = opt.lr_scheduler.CyclicLR(base_optimizer, base_lr=0.01, max_lr=0.1)
LARC

LARS
optimisation
from APEX



39

Large Batches Rider

Weight Decay

SGD AdamW

LARS

LAMB

LR Scheduler
Warmup LR Decay

LR scaling
SharpMinima

Batch Scheduler



40

BLOOM example

AdamW,
β1=0.9, β2=0.95, eps=1e−8

Weight Decay of 0.1
LR Scheduler
• peak=6e-5
• warmup over 375M tokens
• cosine decay for learning rate down

to 10% of its value, over 410B
tokens

Batch Scheduler
• start from 32k tokens (GBS=16)
• increase linearly to 4.2M tokens/step

(GBS=2048) over ~20B tokens
• then continue at 4.2M tokens/step

(GBS=2048) for 430B tokens

95281 steps (116.8 days)



Reducing Optimizer
Communication Costs

41

AllReduce Bottleneck◂

PowerSGD ◂

DiLoCo ◂



AllReduce bottleneck

42



DDP Communication Costs

43



Gradient compression - PowerSGD

44https://arxiv.org/pdf/1905.13727



Asynchronous Optimization - DiLoCo

45https://arxiv.org/pdf/2311.08105



New optimizers

46

New trend : optimizers learning ◂

New optimizers Abyss ◂

LION : example of a new approach ◂



47

New trend : optimizers learning

AdaptativeMomentum

SWARMGrad
ient

Orders



48

New optimizers Abyss

Schmidt, Robin M., Frank Schneider, and Philipp Hennig. "Descending through a crowded valley-benchmarking deep learning optimizers."
International Conference on Machine Learning. PMLR, 2021.

???

SGD

???

???
ADAMW



49

LION : example of a new approach

Chen, Xiangning, et al. "Symbolic discovery of optimization algorithms." arXiv preprint arXiv:2302.06675 (2023).



Pratice : Learning rate + Optimiseurs

50

Goals :
• Edit the learning rate scheduler
• Edit the optimizer
• Do training with large batches

From JupyterHub: Launch an interactive instance Go to the tp_optimizers folder Open the DLO-JZ_Optimizers notebook


