

Optimized Deep Learning - Jean Zay

Training and large batches

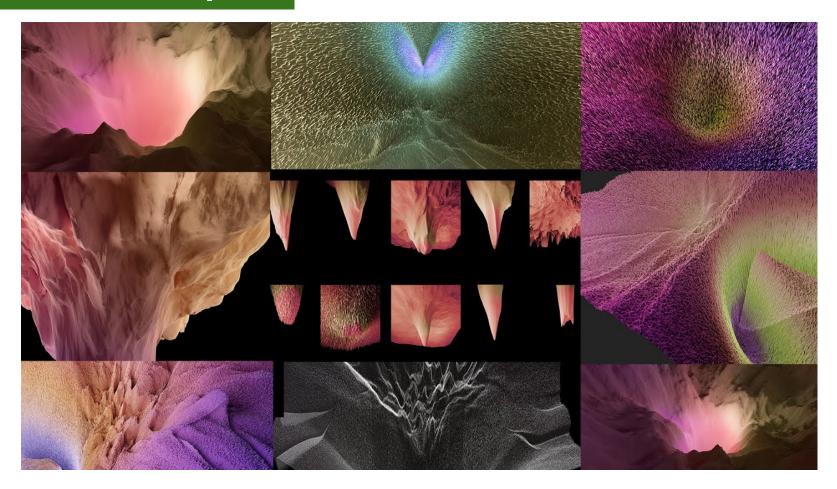
Loss Landscape

Loss Landscape <

- Residual Learning <
 - Initialization <

Loss Landscape

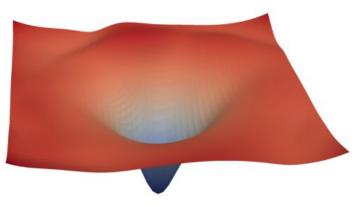
https://losslandscape.com/



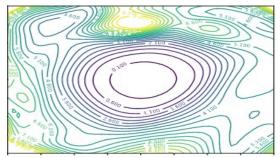
Loss Landscape

https://arxiv.org/pdf/1712.09913.pdf

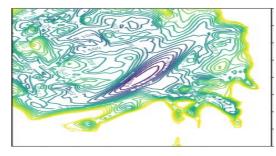
Residual Learning Since Resnets (2015) ...



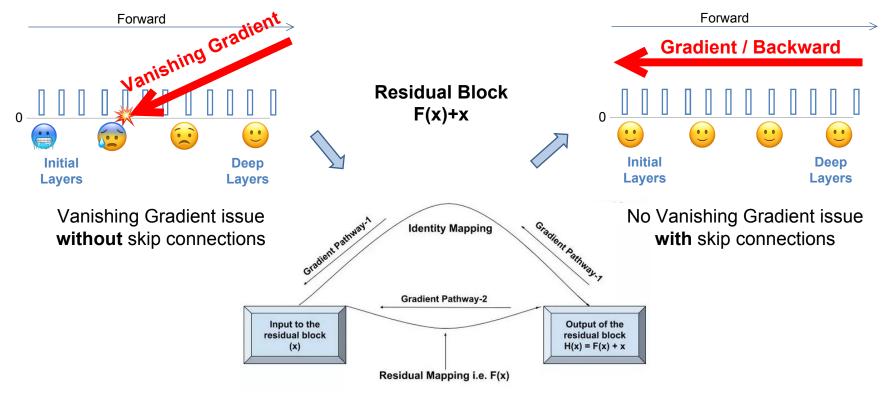
(b) with skip connections



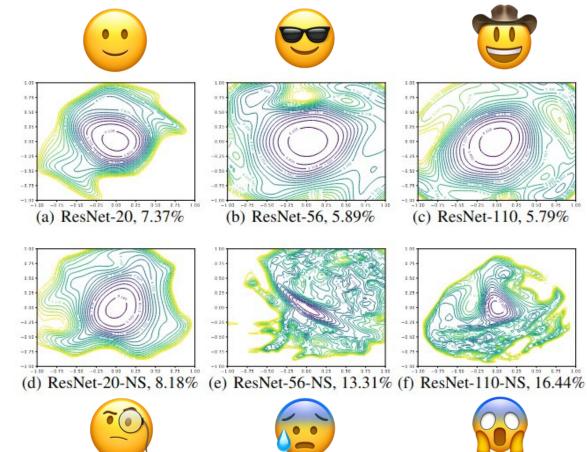
(a) without skip connections



Residual Learning



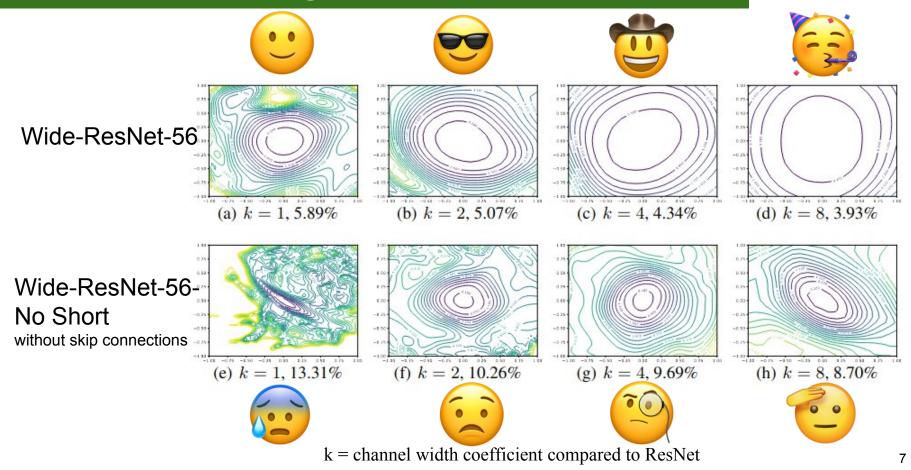
Residual Learning – depth impact



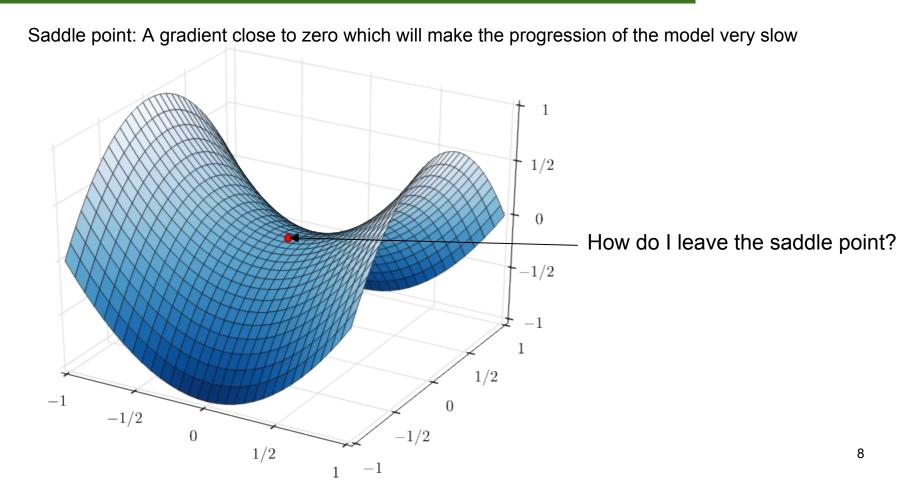
ResNet

ResNet -No Short without skip connections

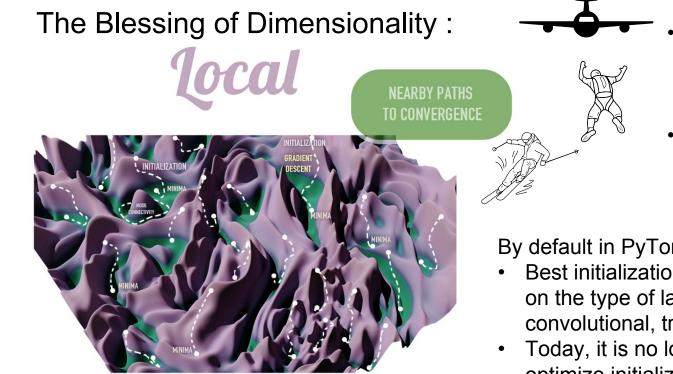
Residual Learning – width impact



Saddle point Problem



Model Parameters Initialization



Xavier Initialization

- uniform
- normal
- Kaiming Initialization •
 - uniform
 - normal

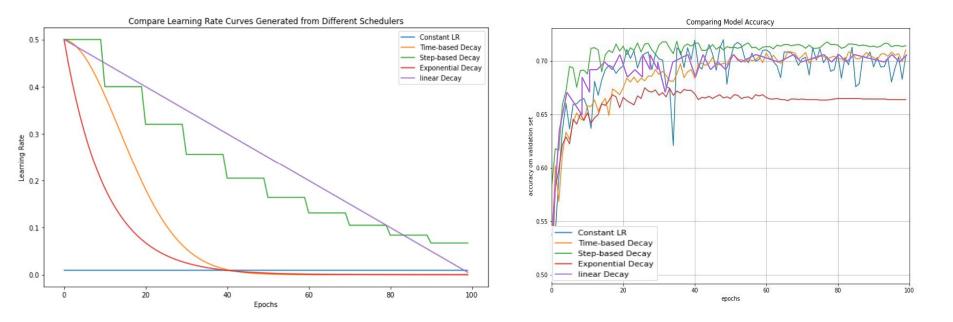
By default in PyTorch:

- Best initialization algorithm depending on the type of layer (linear, convolutional, transform, ...).
- Today, it is no longer necessary to try to optimize initialization.

- Learning Rate scheduler <
 - Cyclic scheduler <
 - One Cycle scheduler <
 - ScheduleFree <

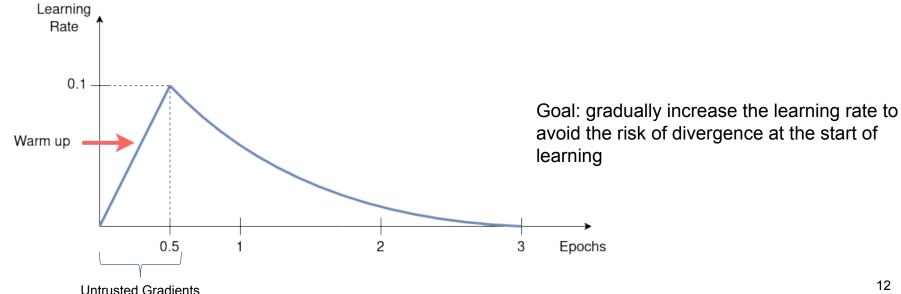
LR Finder

Learning rate decay

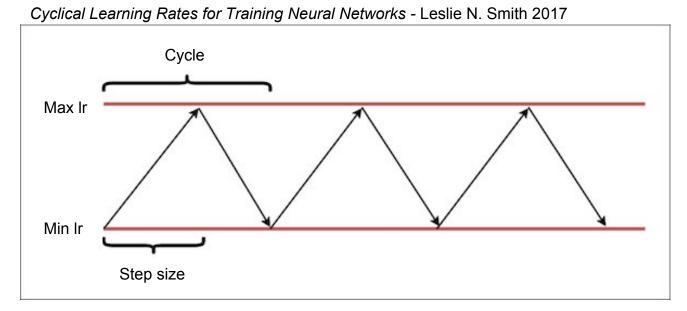


WARMUP for *large batches*

Problems: The first iterations have too much effect on the model (significant losses, high gradients, bias, etc.), a high learning rate can cause strong instability or divergence



Cyclic Learning Rate Scheduler

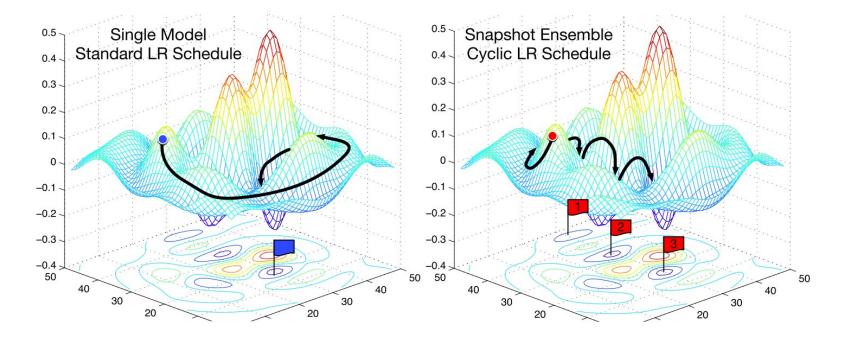


Paramètres :

- Step_size = x * epoch ($2 \le x \le 10$)
- Base_Ir -> min convergence value
- max_lr -> max convergence value

Succession of warmups and learning rate decays

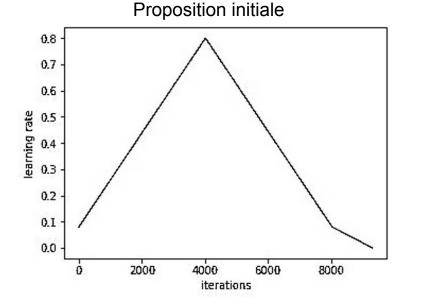
Cyclic Learning Rate Scheduler



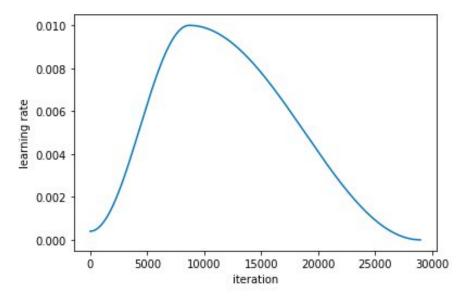
SNAPSHOT ENSEMBLES: TRAIN 1, GET M FOR FREE Gao Huang, Yixuan Li, Geoff Pleiss

One Cycle Learning Rate

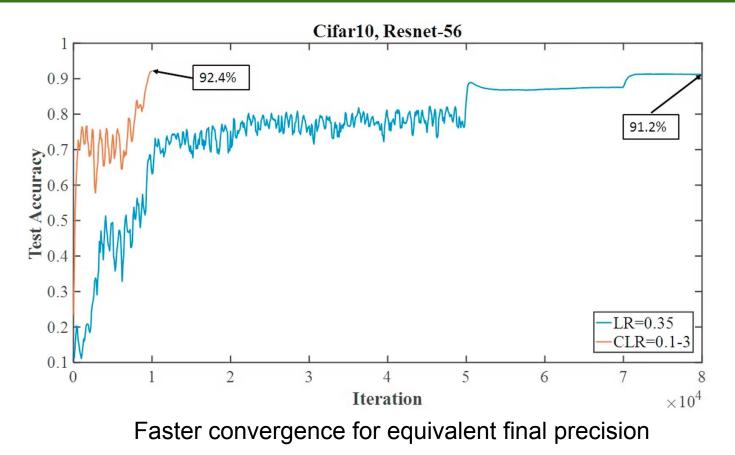
One cycle is enough! A disciplined approach to neural network hyper-parameters - Leslie N. Smith



cosine annealing : Recommandation par FastAI



One Cycle Learning Rate - *Super convergence*

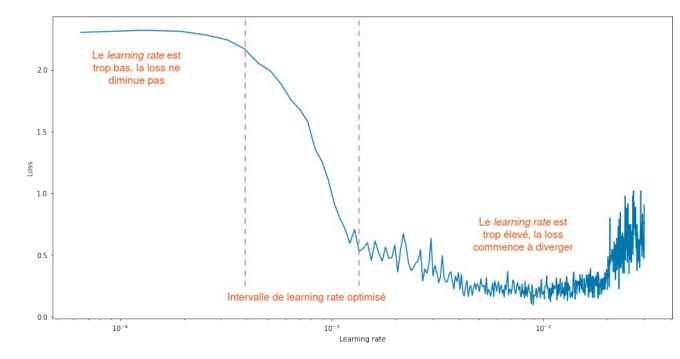


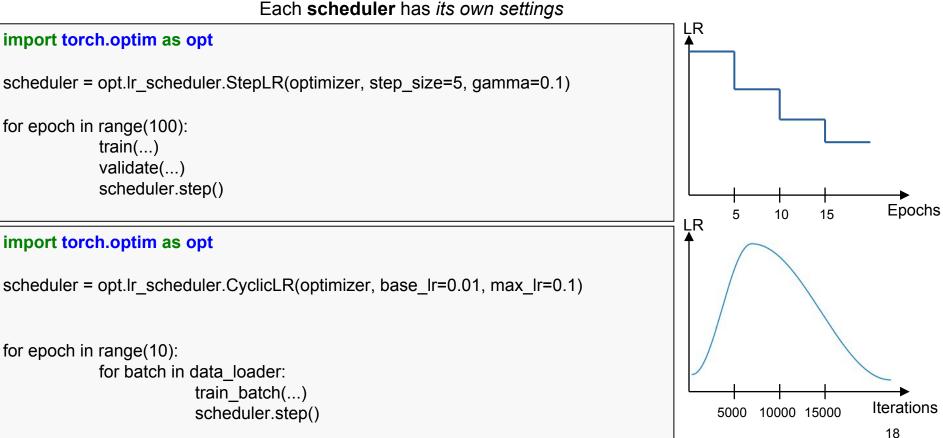
Learning Rate Finder

Goal: Find the **optimal learning rate** values for your model, particularly for **the maximum value** of a *cyclic scheduler*

Run your model over a few epochs by increasing its learning rate

- Start of loss reduction → Minimal learning rate
- Start of loss variation → Maximum learning rate





The Road Less Scheduled : ScheduleFree

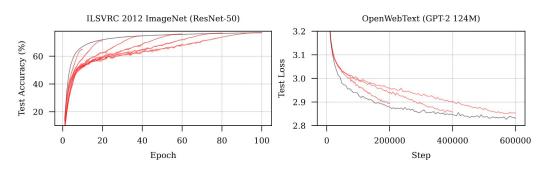


Figure 1: Schedule-Free methods (black) closely track the Pareto frontier of loss v.s. training time in a single run. Both Schedule-Free SGD (left) and AdamW (right) match or exceed the performance of cosine learning rate schedules of varying lengths (red).

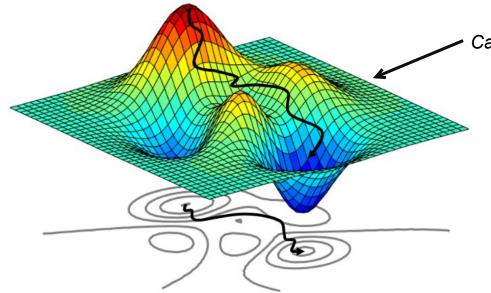
Algorithm 1 Schedule-Free AdamW 1: **Input:** x_1 , learning rate γ , decay λ , warmup steps $T_{\text{warmup}}, \beta_1, \beta_2, \epsilon$ 2: $z_1 = x_1$ 3: $v_0 = 0$ 4: for t = 1 to T do $y_t = (1 - \beta_1)z_t + \beta_1 x_t$ 5: 6: $q_t \in \partial f(y_t, \zeta_t)$ $\begin{aligned} & v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2 \\ & \hat{v}_t = v_t / (1 - \beta_2^t) \end{aligned}$ 7: 8: $\gamma_t = \gamma \min(1, t/T_{\text{warmup}})$ 9: 10: $z_{t+1} = z_t - \gamma_t g_t / (\sqrt{\hat{v}_t} + \epsilon) - \gamma_t \lambda y_t$ $c_{t+1} = \frac{\gamma_t^2}{\sum_{i=1}^t \gamma_i^2}$ 11: $x_{t+1} = (1 - c_{t+1}) x_t + c_{t+1} z_{t+1}$ 12: 13: end for 14: Return x_{T+1}

Gradient Descent Optimizer

SGD ◀ ADAM◀ ADAMW ◀

Optimizer - SGD

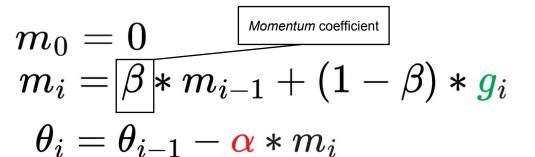
The **optimizer** is the algorithm that **controls the gradient descent** and **the minimum search** with the aim of optimizing the learning time and the final metric.



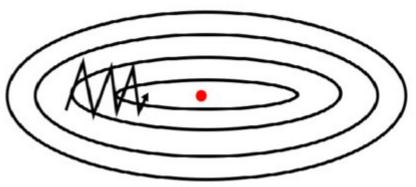
 SGD = Stochastic Gradient Descent
 Calculating the Gradient and updating the weights at each batch

- + Batch size and learning rate adaptable according to conflicting needs:
- Exploration to find the best local minimum
- Acceleration of gradient descent

SGD with Momentum



SGD without momentum

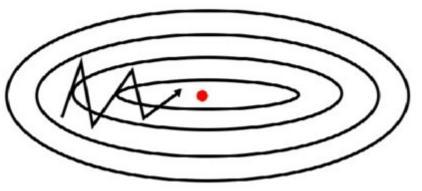


Goal: Take **previous gradients** into consideration for **faster** gradient descent.

Recommended initial value: 0.9

0.85 < eta < 0.95

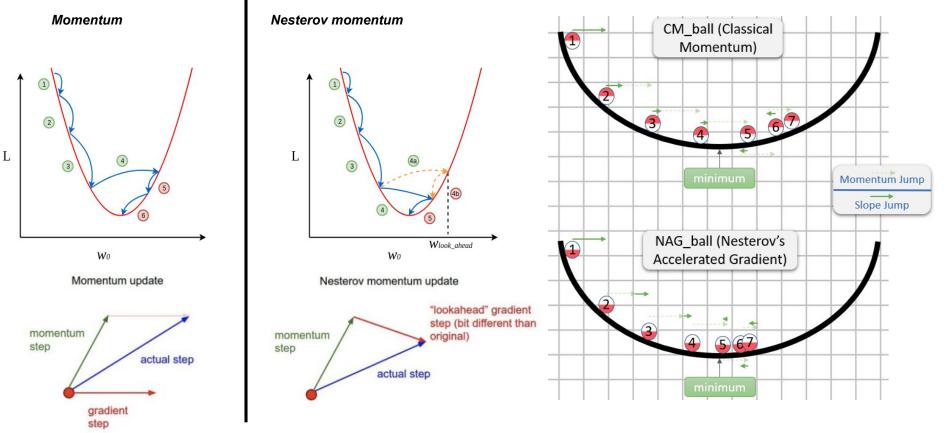
SGD with momentum



+ Allows you to converge more quickly

- **No guarantee** that momentum will take us in the right direction

Momentum type



Why Momentum Works ?



0.00 0.500	0.990

We often think of Momentum as a means of dampening oscillations and speeding up the iterations, leading to faster convergence. But it has other interesting behavior. It allows a larger range of step-sizes to be used, and creates its own oscillations. What is going on?

GABRIEL GOHApril. 4Citation:UC Davis2017Goh, 2017

https://distill.pub/2017/momentum/

Adaptive Optimizers

Rather than controlling the gradient descent manually with the learning rate...

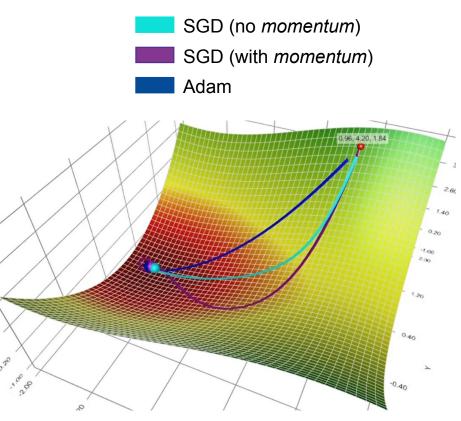
... We can adapt the *learning rate* for each weight of the model according to the gradient, the gradient2, or the norm of the weights of the layer!!!

Examples :

- AdaGrad,
- AdaDelta,
- RMSprop
- Adam

Specialized for larges batches :

- LARS
- LAMB



Adam

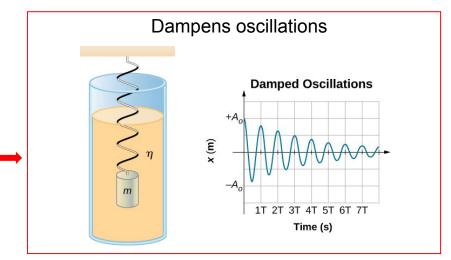
$$\begin{split} m_i &= \beta_1 * m_{i-1} + (1 - \beta_1) * g_i \\ v_i &= \beta_2 * v_{i-1} + (1 - \beta_2) * g_i^2 \\ \hat{m_i} &= \frac{m_i}{1 - \beta_1^i} \\ \hat{v_i} &= \frac{v_i}{1 - \beta_2^i} \\ \theta_i &= \theta_{i-1} - \frac{\alpha}{\sqrt{\hat{v}_i + \epsilon}} * \hat{m}_i \\ \\ \\ \text{Parameters:} \end{split}$$

 $β_1 & β_2$ = Regression rate ($β_1 = 0.9 & β_2 = 0.999$) ε = Very small value to avoid division by zero

Adam : Adaptative moment estimation

First moment : sliding mean

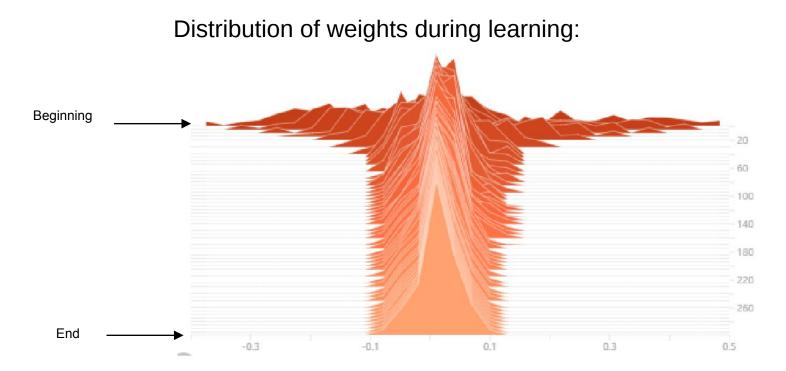
Second moment : sliding non-centered variance



Goal: Adapt the importance of weight updates based on previous gradients and gradient variability.

Weight decay

A neural network that **converges and generalizes correctly*** generally has weights **that tend to 0**. *(neither underfitting nor overfitting)

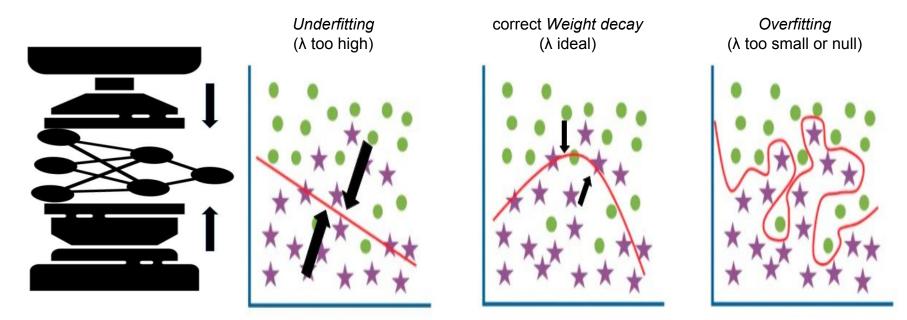


27

Weight decay

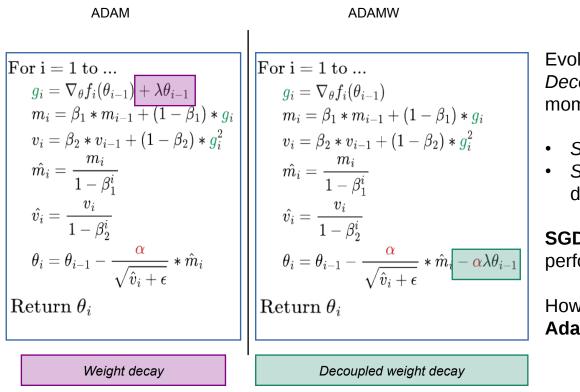
Preferable to standard L2 regularization defined in loss function

 λ : weight decay parameter (between 0 and 0.1)



The weight decay technique, defined in the optimizer, makes it possible to force the weights to converge towards values close to zero.

Weight decay and decoupled weight decay



Evolution of weight decay: *Decoupled weight decay* (decoupled from momentum!!)

- SGD and Adam with weight decay
- SGDW and AdamW with decoupled weight decay

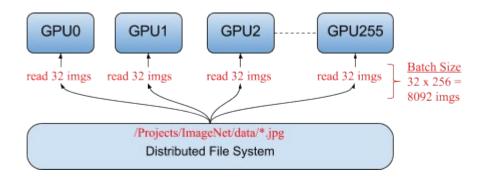
SGD and SGDW are **roughly equivalent** in performance.

However AdamW is noticeably better than Adam!!

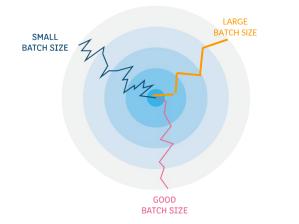
Optimization of large batches

- Large batches issues <
- Learning Rate Scaling & Batch Schedulers <
 - Large batches optimizers <

Large Batches with Data Parallelism



Data Parallelism: This parallelism generates very large batches

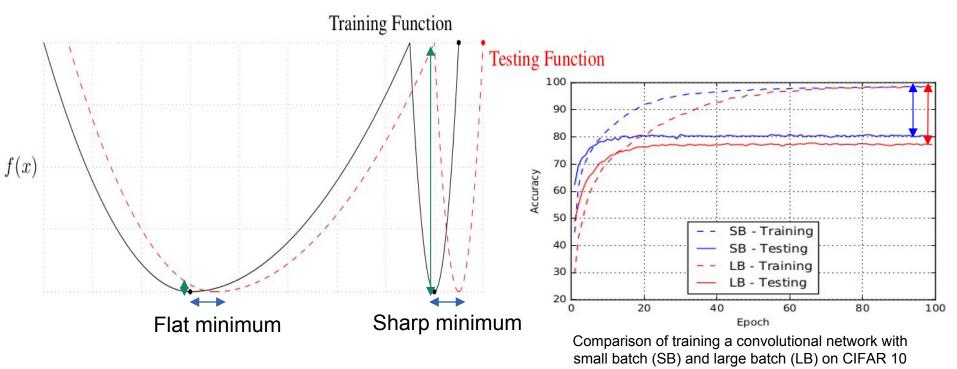


Problem: *Batch* that are too large (> 512) tend to result in **poorer performance**

Large Batches

On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, Ping Tak Peter Tang



The *larger the batch*, the more the model tends to converge towards **steep and narrow minima**.

Large Batches : Learning rate scaling

When the *size of the global* batch **is considerably increased**, it is often *necessary* to **scale the learning rate**:

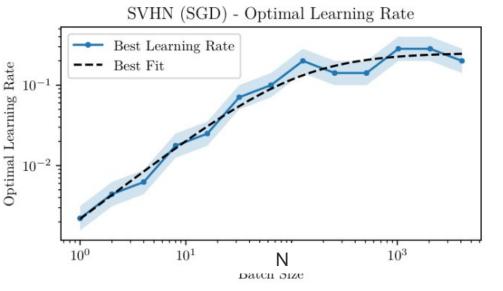
N = Number of parallel processes

Linear growth of *learning rate*:

 $\alpha \rightarrow N * \alpha$

Square root growth of *learning rate*:

$$\boldsymbol{lpha}
ightarrow \sqrt{N} st \boldsymbol{lpha}$$



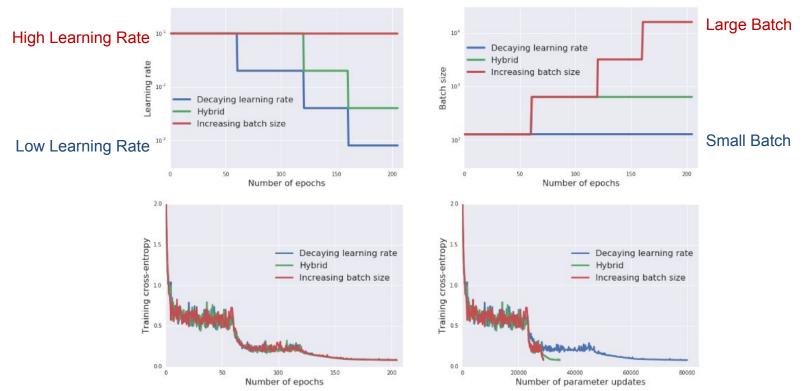
An Empirical Model of Large-Batch Training Sam McCandlish, Jared Kaplan, Dario Amodei

Optimal: **linear growth** at first then **square root** (recommended by OpenAI)

Batch Size Scheduler

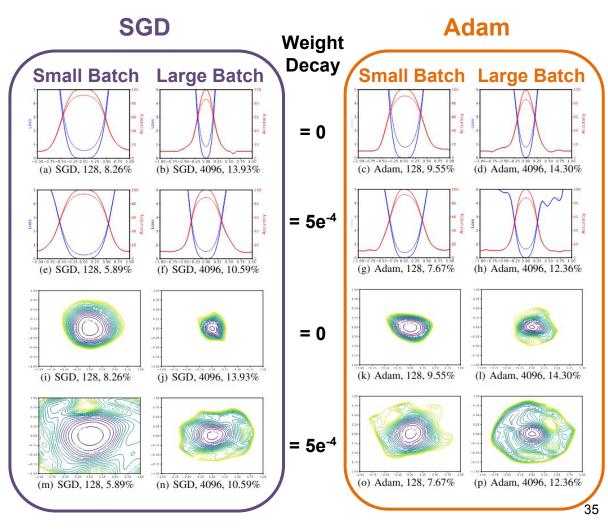
=> Alternative to Learning Rate Scheduler

DON'T DECAY THE LEARNING RATE, INCREASE THE BATCH SIZE



Large Batches

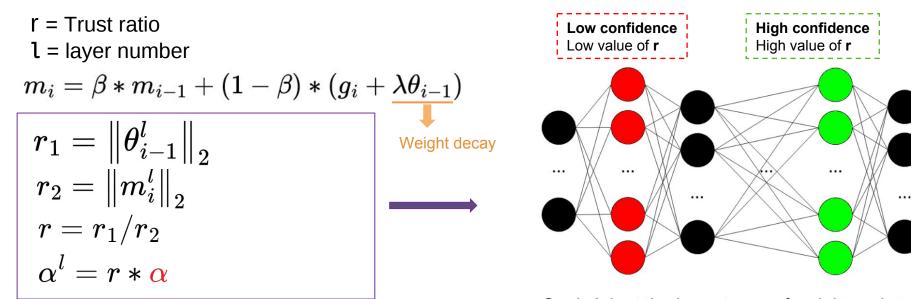
Trends :



Large Batches Optimisers - LARS

LARS = "Layer-wise Adaptive Rate Scaling."

Adaptation of SGD with momentum with the addition of a trust ratio for each layer which depends on the evolution of the layer's gradient



Goal: Adapt the importance of weight updates based on a **trust ratio** calculated for each layer of the network.

$$= heta_{i-1}^l-lpha^lst m_i^l$$

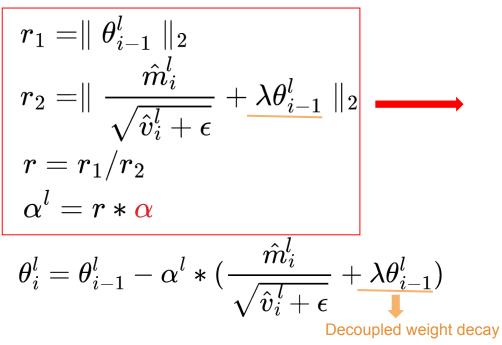
 $heta^l_i$

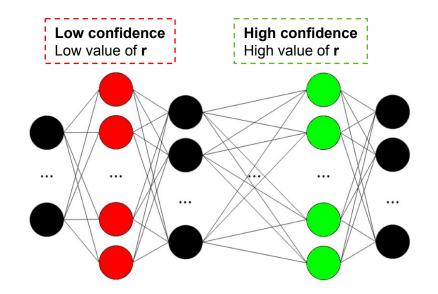
Large Batches Optimisers - LAMB

LAMB pour "Layer-wise Adaptive Moments optimizer for Batch training."

Adaptation of ADAM with momentum with the addition of a trust ratio for each layer which depends on the evolution of the layer's gradient

- r = Trust ratio
- l = layer number

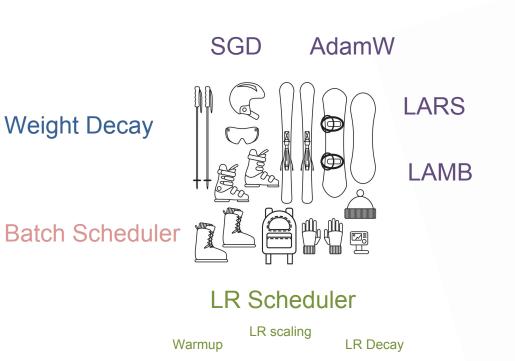




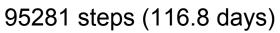
Goal: Adapt the importance of weight updates based on a trust ratio calculated for each layer of the network.

	import torch.optim as opt
SGD	SGD_optimizer = opt.SGD(params, Ir, momentum=0, weight_decay=0, nesterov=False,)
	import torch.optim as opt
ADAMW	ADAM_optimizer = opt.AdamW(params, Ir=0.001, betas=(0.9, 0.999), weight_decay=0.05,)
	from apex.optimizers import FusedLamb
LAMB	LAMB_optimizer = FusedLamb(params, Ir=0.001, betas=(0.9, 0.999), weight_decay=0, adam_w_mode=True)
	import torch.optim as opt from apex.parallel.LARC import LARC
LARC LARS	base_optimizer = opt.SGD(params, Ir=0.001, momentum=0.9, weight_decay=0) optimizer = LARC(base_optimizer)
optimisation from APEX	scheduler = opt.lr_scheduler.CyclicLR(base_optimizer, base_lr=0.01, max_lr=0.1)

Large Batches Rider



BLOOM example



AdamW, β1=0.9, β2=0.95, eps=1e-8

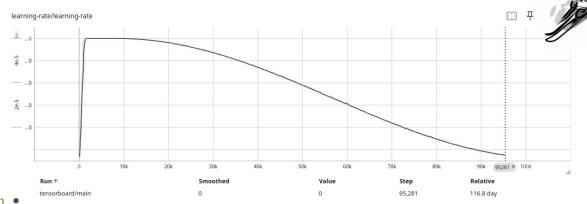
Weight Decay of 0.1

LR Scheduler

- peak=6e-5
- warmup over 375M tokens
- cosine decay for learning rate down
 to 10% of its value, over 410B
 tokens

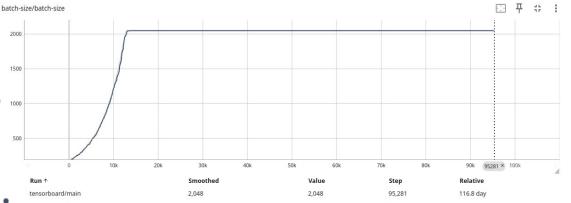
Batch Scheduler

- start from 32k tokens (GBS=16)
- increase linearly to 4.2M tokens/step (GBS=2048) over ~20B tokens
- then continue at 4.2M tokens/step (GBS=2048) for 430B tokens



176B params 59 languages Open-access

40



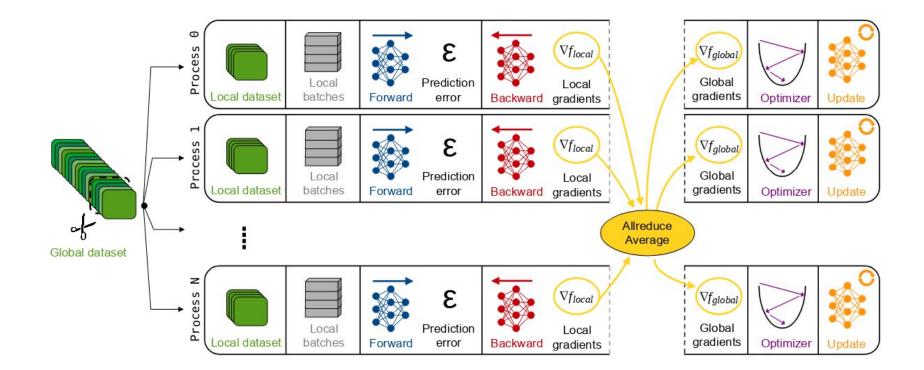
Reducing Optimizer Communication Costs

AllReduce Bottleneck

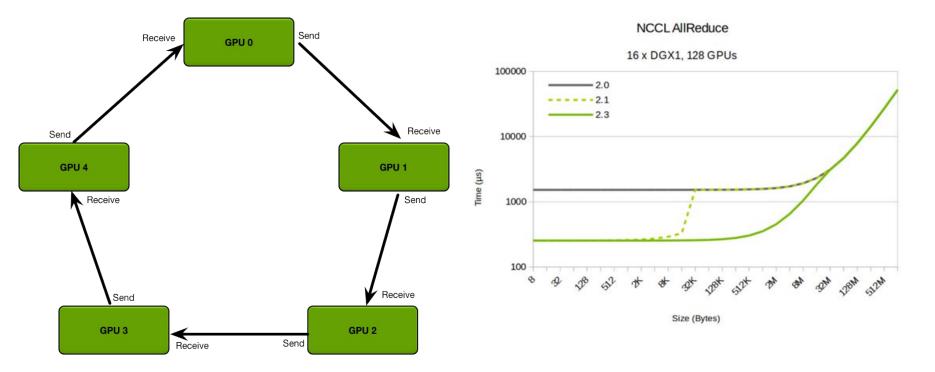
PowerSGD ◀

DiLoCo <

AllReduce bottleneck



DDP Communication Costs



Gradient compression - PowerSGD

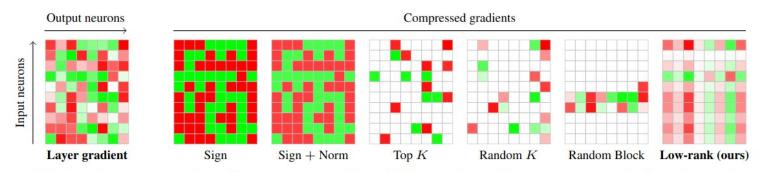


Figure 1: Compression schemes compared in this paper. Left: Interpretation of a layer's gradient as a matrix. Coordinate values are color coded (**positive**, **negative**). Right: The output of various compression schemeson the same input. Implementation details arein Appendix G.

Table 3: POWERSGD with varying rank. With sufficient rank, POWERSGD accelerates training of a RESNET18 and an LSTM by reducing communication, achieving test quality on par with regular SGD in the same number of iterations. The time per batch includes the forward/backward pass (constant). See Section 5 for the experimental setup.

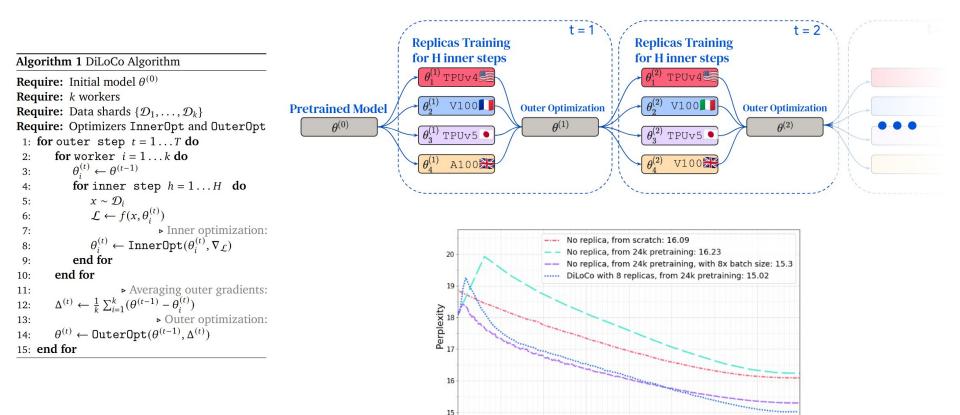
Image classification — RESNET18 on CIFAR10

Algorithm	Test accuracy		Data sent per epoch		ch Time per batch	
SGD	94.3% —	н	1023 MB	(1×)	312 ms	+0%
Rank 1	93.6% —	H	4 MB	$(243\times)$	229 ms	-26%
Rank 2	94.4% —	H	8 MB	$(136 \times)$	239 ms	-23%
Rank 4	94.5% —		14 MB	$(72\times)$	260 ms	-16%

Language modeling — LSTM on WIKITEXT-2

Algorithm	Test perplexity	Data sent per epoch		Time per batch	
SGD	91	7730 MB	$(1\times)$	300 ms	+0%
Rank 1	102 — н	25 MB	$(310 \times)$	131 ms	-56%
Rank 2	93 — н	38 MB	$(203 \times)$	141 ms	-53%
Rank 4	91 -	64 MB	$(120\times)$	134 ms	-55%

Asynchronous Optimization - DiLoCo

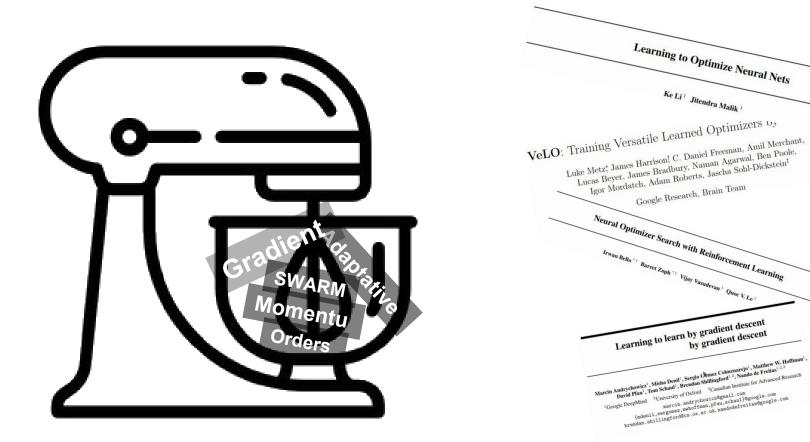


Training Steps

New optimizers

- New trend : optimizers learning <
 - New optimizers Abyss <
- LION : example of a new approach <

New trend : optimizers learning



New optimizers *Abyss*

		Name	Ref.	Name	Ref.
		AcceleGrad	(Levy et al., 2018)	ByperAdam	(Wang et al., 2019b)
		ACCTIp	(20ang et al., 2020)	K-BFGS/K-BFGS(L)	(Goldfarb et al., 2020)
		AdaMaer AdaBatch	(Xie et al., 2019) (Devarakonda et al., 2017)	KF-QN-CNN KEAC	(Ren & Goldfarb, 2021) (Martens & Grosse, 2015)
		AduBrich AduBres/AduBrow-SS	(Devarationda et al., 2017) (Airchison, 2020)	KFLR/KFRA	(Marlens & Grosse, 2015) (Boney et al., 2017)
		AlaBelief	(Zhoing et al., 2005)	L4Adara/L4Momentura	(Rolinek & Martias, 2018)
		AdaBlock	(Yan et al., 2019)	LAMB	(You et al., 2020)
		AdaBound	(Lao et al., 2019)	LaProp	(Ziyin et al., 2020)
		AdaComp	(Chen et al., 2018) (Zeiler, 2017)	LARS	(You et al., 2017) (Almeida et al., 2021)
		Adafactor	(Shareer & Stern, 2018)	LookAhead	(Omenan et al., 2019) (Zhang et al., 2019)
		Addia	(Bas et al., 2019)	M-SVAG	(Balles & Hennig, 2018)
		AdaForm	(Chen et al., 2019a)	MADGRAD	(Defazio & Jelassi, 2021)
		AddFTRL	(Orabona & Pál, 2015)	MAS	(Landro et al., 2020)
		Adagrad ADAHESSIAN	(Duchi et al., 2011) (Yao et al., 2020)	MEKA MTAdam	(Chen et al., 2020b) (Malkiel & Wolf, 2020)
		Adai	(Xie et al., 2020)	MVRC-1/MVRC-2	(Chen & Zhen, 2020)
		Adularia	(Teixeira et al., 2019)	Natara	(Deent, 2016)
		Adam	(Kingma & Ba, 2015)	NAMSB/NAMSG	(Chen et al., 2019b)
		Adam*	(Lin et al., 20206)	ND-Adam	(Zhang et al., 2017a)
		Adam AL	(Tao et al., 2019)	Nero	(Liu et al., 2021b)
		AdaMax AdamBS	(Kingma & Ba, 2015) (Litz et al., 2020c)	Nesterov Notev Adam/Notev K-FAC	(Nesterov, 1983) (Zhang et al., 2018)
		AdamBS AdamNC	(Liu et al., 2020c) (Reddi et al., 2018)	Notsy Adam/Notsy K-FAC Non-Adam	(Zhang et al., 2018) (Huang et al., 2019)
		AdaMod	(Ding et al., 2019)	Novegrad	(Gindong et al., 2019) (Gindong et al., 2019)
		AdamPISGDP	(Heo et al., 2021)	NESGD	(Zhou et al., 2021b)
		AdamT	(Zhou et al., 2020)	Padam	(Chen et al., 2020a)
		AdamW	(Loshchilov & Hatter, 2019)	PAGE	(Li et al., 2020b)
		AdamX ADAS	(Tran & Phong, 2015) (EDyaha, 2020)	PAL PolyAdam	(Matschler & Zell, 2020) (Orviero et al., 2019)
		ADAS	(EDyaha, 2020) (Hosseini & Plataniotis, 2020)	PolyAdam Polyak	(Orvieto et al., 2019) (Pelvak, 1964)
		AdaScale	(Johnson et al., 2020)	Power5GD/Power5GDM	(Vegels et al., 2019)
		AdaSGD	(Wang & Wiens, 2020)	Probabilistic Połyak	(de Roos et al., 2021)
		AduShift	(Zhou et al., 2015)	ProbLS	(Mahsereci & Hennig, 2017)
-		AdaSon Adathm	(Ha et al., 2019) (San et al., 2019)	PStorm QHAdara/QHM	(Xu, 2020) (Ma & Yarats, 2019)
		AdaX/AdaX-W	(Sun et al., 2019) (Li et al., 2020a)	RAdam	(Ma & Sarais, 2019) (Liu et al., 2020a)
		AEGD	(Lin & Tian, 2020)	Ranger	(Wright, 2020b)
		ALI-G	(Bernada et al., 2020)	BangerLary	(Grankin, 2020)
		AMSBoard	(Luo et al., 2019)	RMSPtop	(Tieleman & Hinton, 2012)
	· · · ·	AMSOrad	(Reddi et al., 2018)	RMSterry	(Choi et al., 2019)
		Angula/Grad AnnijoLS	(Roy et al., 2021) (Nerwani et al., 2019)	S-SGD SAdan	(Song et al., 2020) (Wang et al., 2020b)
	-	ARSO	(Chen et al., 2019)	Sadam/SAMSOrad	(Tong et al., 2019)
	- I	ASAM	(Kwen et al., 2021)	SALR	(Tiar et al., 2020)
		AmoLRS	(Jin et al., 2021)	SAM	(Foret et al., 2021)
		AvaGrad	(Savarese et al., 2019)	SC-Adagnad/SC-RMSPrep	(Makkamala & Hein, 2017)
		BAdam BGAdam	(Salas et al., 2018) (Bai & Zhanz, 2019)	SDPsap SGD	(Ida et al., 2017) (Robbins & Monro, 1951)
		REGital	(Bar & Zhang, 2019) (Zhang et al., 2017b)	SGD-BB	(Robbins & Moleri, 1951) (Tan et al., 2016)
		BRMSProp	(Aitchison, 2020)	SGD-02	Ovali & Tarinici, 2020
		RSGD	(Ha et al., 2020)	SGDEM	(Ramezani-Kebrya et al., 2021)
		C-ADAM	(Tatunov et al., 2020)	SGDHess	(Tran & Cutkesky, 2021)
		CADA	(Chen et al., 2021)	SGDM	(Lin & Lne, 2020)
		Cool Momentum CPop	(Borysenko & Byshkin, 2020) (Preechakul & Kipinikal, 2019)	SGDR SHAdagrad	(Loshchilow & Hotter, 2017) (Huang et al., 2020)
		Carveball	(Preechator & Reparkin, 2019) (Hentiques et al., 2019)	Shumoo	(Anil et al., 2020; Gupta et al., 2018)
		Dadem	(Nacari et al., 2019)	SignAdame+	(Wang et al., 2019a)
		DeepMemory	(Wright, 2020a)	Siga5GD	(Bernstein et al., 2018)
		DGNOpt	(Lio et al., 2021a)	SKQN/54QN	(Yang et al., 2020)
		Difforad EAdam	(Dates et al., 2020)	SM3 SMG	(Anil et al., 2019) (Tun et al., 2020)
		EAdan	(Yuan & Gao, 2020) (George et al., 2018)	SMG	(Tun et al., 2020) (Zhuo et al., 2020)
		ENFAC.	(Hayashi et al., 2018)	SoftAdam	(Fetterman et al., 2019)
	•—	Expectional	(Daley & Armio, 2020)	SRSGD	(Wang et al., 2020a)
		FastAdaBelief	(2hou et al., 2021a)	Step-Tuned SGD	(Castern et al., 2021)
	طر م	IRSCD	(Wing & Yr, 2020)	SWATS	(Keskar & Socher, 2017)
	-	G-AdaOrad	(Chakraburi & Chopra, 2021)	SWNTS	(Chen et al., 2009c)
		Calum.	(Zhang & Gouza, 2018) (Generici et al., 2020)	TAdam TEXEAC	(Ilboado et al., 2020) (Gaucet al., 2020)
		Gadam	(Chae et al., 2021)	VAdam	(Khan et al., 2018)
			(Kafka & Wille, 2019)	VR-SGD	(Shang et al., 2020)
	•	Grad-Avg	(Budayasha & Parkayasha, 2020)	v90D-b>50D-p>50D-I	(Schaul et al., 2013)
		DRANKER D	(Dellaferrera et al., 2021)	vSGD-6d	(School & LeCun, 2013)
				WNGrad Yielkov/Fin	(Wu et al., 2018)
_		Hoder	(Balrani & Zaleh, 2021) (Jiang et al., 2015)	YellowFin Yegi	(Zhang & Midliagkas, 2019) (Zoheer et al., 2018)

ADAMW SGD ???

Schmidt, Robin M., Frank Schneider, and Philipp Hennig. "Descending through a crowded valley-benchmarking deep learning optimizers." *International Conference on Machine Learning*. PMLR, 2021.

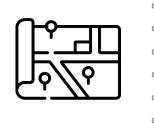
LION : example of a new approach

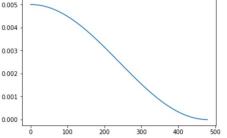
Algorithm 1 AdamW Optimizer

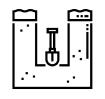
given $\beta_1, \beta_2, \epsilon, \lambda, \eta, f$ initialize $\theta_0, m_0 \leftarrow 0, v_0 \leftarrow 0, t \leftarrow 0$ while θ_t not converged do $t \leftarrow t + 1$ $g_t \leftarrow \nabla_{\theta} f(\theta_{t-1})$ update EMA of g_t and g_t^2 $m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1)g_t$ $v_t \leftarrow \beta_2 v_{t-1} + (1 - \beta_2)g_t^2$ bias correction $\hat{m}_t \leftarrow m_t/(1 - \beta_1^t)$ $\hat{v}_t \leftarrow v_t/(1 - \beta_2^t)$ update model parameters $\theta_t \leftarrow \theta_{t-1} - \eta_t(\hat{m}_t/(\sqrt{\hat{v}_t} + \epsilon) + \lambda\theta_{t-1}))$ end while return θ_t

Algorithm 2 Lion Optimizer (ours)

 $\begin{array}{l} \textbf{given} \ \beta_1, \beta_2, \lambda, \eta, f\\ \textbf{initialize} \ \theta_0, m_0 \leftarrow 0\\ \textbf{while} \ \theta_t \ \textbf{not} \ \textbf{converged} \ \textbf{do}\\ g_t \leftarrow \nabla_\theta f(\theta_{t-1})\\ \textbf{update} \ \textbf{model} \ \textbf{parameters}\\ c_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t\\ \theta_t \leftarrow \theta_{t-1} - \eta_t (\text{sign}(c_t) + \lambda \theta_{t-1})\\ \textbf{update} \ \textbf{EMA of} \ g_t\\ m_t \leftarrow \beta_2 m_{t-1} + (1 - \beta_2) g_t\\ \textbf{q} \ \textbf{end} \ \textbf{while}\\ \textbf{return} \ \theta_t \end{array}$







Pratice : Learning rate + Optimiseurs

Goals :

- Edit the learning rate scheduler
- Edit the optimizer
- Do training with large batches

From JupyterHub:

- Launch an interactive instance
- Go to the tp_optimizers folder
- Open the DLO-JZ_Optimizers notebook