

Optimised Deep Learning - Jean Zay

Hyperparameter Optimization

HPO = Hyperparameter Optimisation

Hyperparameters <

HPO <

Related Problems <

In machine learning, a hyperparameter is **a parameter whose value is used to control the learning process**. By contrast, the values of other parameters (typically node weights) are derived via training.

HPO : Hyperparameter Optimisation

Machine learning algorithms are highly configurable by their hyperparameters.

These parameters often substantially influence the complexity, behavior, speed as well as other aspects of the learner, and their values must be selected with care in order to achieve optimal performance.

Human trial-and-error to select these values is time-consuming, often somewhat biased, error-prone and computationally irreproducible.

Hyperparameter Optimization == Bi-Level optimization problem

Related Problems

- Neural Architecture Search (NAS)
- Algorithm Selection and traditional Meta-Learning
- Algorithm configuration (AC)
- Dynamic Algorithm Configuration (DAC)
- Learning to learn and to optimize

A Comprehensive Survey of Neural Architecture Search: Challenges and Solution (https://arxiv.org/pdf/2006.02903.pdf)

Fastest wheel change on a moving car - Guinness World Records

6

Search Algorithms / Samplers

Basic < Manual, Grid Search, Random Search

Bayesian Optimisation <

Tree-structured Parzen Estimator, Gaussian Process

Heuristic <

Genetic Algorithm, Particle Swarm Optimization

Gradient-based Optimization <

Basic : Grid & Random Search

- Independent tests (which can be parallelized) which test a combination of hyperparameters.
- Very costly in resources and no guarantee of improved results.
- Random search is better for high dimensional space

Bayesian Optimization : TPE & GP

Expected metric score according to Hyper-parameters

Maximize Acquisition function e.g. Expected Improvement

- Tree Parzen Estimator / Gaussian Process
- Sequential but allows to quickly find the global optimum.
- Proposes a new set of hyper parameters based on the scores obtained by the previous ones tested.

Heuristic : Evolutionary Optimization

- Bio-inspired
- Can have fatal mutation

- Genetic Algorithm (GA)
- Genetic Programming (GP)
- Evolution Strategy (ES)
- Particle Swarm Optimization (PSO)
- Estimation of Distribution Algorithms (EDA)

Gradient-based optimization

Optimizing Millions of Hyperparameters by Implicit Differentiation (https://arxiv.org/pdf/1911.02590.pdf)

- High dimensionality
- Bi-level optimisation

Schedulers Algorithms / Pruners

Early Stopping <

SHA/ASHA <

HyperBand <

SHA : Successive Halving Algorithm

- For sequentials trials
- Works well with small or medium model -> Trials must be fast !

Hyperband

11 return Configuration with the smallest intermediate loss seen so far.

	s = 4		s = 3		s = 2		s = 1		s = 0	
i	n_i	r_i								
0	81	1	27	3	9	9	6	27	5	81
1	27	3	9	9	3	27	2	81		
2	9	9	3	27	1	81				
3	3	27	1	81			9			
4	1	81								

Table 1: Values of n_i and r_i for the brackets of HYPER-BAND when R = 81 and $\eta = 3$.

Figure 2: Performance of individual brackets *s* and HYPERBAND.

- Repeatedly calls SuccessiveHalving but mitigate it's drawbacks
- Limited convergence

Advanced Algorithms Hybrid time !

PBT ◀

BOHB, DEHB ◀

PBT : Population Based Training

- Research and optimization of hyper parameters during training
- For large models with long and poorly parallelizable tests on a few machines.
- **Exploit** = Copy of the weights of the best model
- **Explore** = Bayesian Optimization

BOHB : Bayesian Optimization Hyperband

DEHB : Differential Evolution Hyperband

Summary

Have the right tools

HPO frameworks <

Visualisation & Experiments Tracking <

HPO Frameworks & tools

- Based on config file
- Easy to use

٠

Not only used for ML/DL

- Work with an objective function
- Efficient Optimization Algorithms

- Scalable HPO framework
- State of the art algorithms (PBT)
- Integrates with a wide range of additional HPO tools

mlflow ou 🔡 Weights & Biases 🕂

Advantages :

- allows you to save and order the results
- allows easy comparison and visualization of results
- provides all the information needed to reproduce the results

HPO and MLOps

- As soon as our HPO requires a lot of resources (time, money or both) it is necessary to scale up and industrialize the experience process.
- Taking inspiration from MLOps processes and tools is a good start

https://ml-ops.org/content/end-to-end-ml-workflow

Sources

- Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges (https://wires.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/widm.1484)
- <u>https://www.automl.org/</u>
- Gradient-based Hyperparameter Optimization Over Long Horizons (https://openreview.net/pdf?id=6x8tcREIL2W)
- Seld-Tuning networks : Bilevel Optimization of Hyperparameters using structured best-response functions (https://openreview.net/pdf?id=r1eEG20qKQ)
- https://maelfabien.github.io/machinelearning/Explorium4/#
- <u>https://towardsdatascience.com/a-novices-guide-to-hyperparameter-optimization-at-scale-bfb4e5047150#e813</u>
- Population Based Training : <u>https://www.deepmind.com/blog/population-based-training-of-neural-networks</u>
- Hyper-Parameter Optimization: A Review of Algorithms and Applications : https://arxiv.org/pdf/2003.05689