
1

Deep Learning Optimisé - Jean Zay
Best Practices and State Of The Art

• Enable asynchronous data loading and augmentation

• Disable gradient calculation for validation or inference

• Use mixed precision and AMP

• Use efficient data-parallel backend

2https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html

Performance Tuning Guide

torch.utils.data.DataLoader
num_workers > 0
pin_memory=True

with torch.no_grad():
val_outputs = model(val_images)
val_loss = criterion(val_outputs, val_labels)

torch.nn.parallel.DistributedDataParallel

from torch.cuda.amp import autocast, GradScaler
with autocast():

https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html

3https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html

Performance Tuning Guide

• Disable bias for convolutions directly followed by a batch norm

• Enable channels_last memory format for computer vision models

• Disable debugging APIs

• Create tensors directly on the target device

nn.Conv2d(..., bias=False,)
Models available from torchvision already
implement this optimization.

x = x.to(memory_format=torch.channels_last)

anomaly detection: torch.autograd.detect_anomaly or torch.autograd.set_detect_anomaly(True)
profiler related: torch.autograd.profiler.emit_nvtx, torch.autograd.profiler.profile
autograd gradcheck: torch.autograd.gradcheck or torch.autograd.gradgradcheck

torch.rand(size).cuda()
torch.rand(size, device='cuda')

https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html

4https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html

Performance Tuning Guide
• Fuse pointwise operations

Pointwise operations (elementwise addition, multiplication, math functions - sin(), cos(), sigmoid() etc.) can be fused into a
single kernel to amortize memory access time and kernel launch time. PyTorch JIT can fuse kernels automatically.

• Enable cuDNN auto-tuner
For convolutional networks

• Avoid unnecessary CPU-GPU synchronization

@torch.jit.script
def fused_gelu(x):

return x * 0.5 * (1.0 + torch.erf(x / 1.41421))

torch.backends.cudnn.benchmark = True

print(cuda_tensor)
cuda_tensor.item()
memory copies: tensor.cuda(), cuda_tensor.cpu() and equivalent tensor.to(device) calls
cuda_tensor.nonzero()
python control flow e.g. if (cuda_tensor != 0).all()

https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html

5https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html

Performance Tuning Guide

• Load-balance workload in a distributed setting
The core idea is to distribute workload over all workers as uniformly as possible within each global batch. For example
Transformer solves imbalance by forming batches with approximately constant number of tokens (and variable number
of sequences in a batch), other models solve imbalance by bucketing samples with similar sequence length or even by
sorting dataset by sequence length.

• Preallocate memory in case of variable input length
For Speech Recognition or NLP, preexecute a forward and a backward pass with a generated batch of inputs with
maximum sequence length (either corresponding to max length in the training dataset or to some predefined
threshold). This step preallocates buffers of maximum size, which can be reused in subsequent training iterations.

• Match the order of layers in constructors and during the execution if using
DistributedDataParallel``(find_unused_parameters=True)
To maximize the amount of overlap, the order in model constructors should roughly match the order during the
execution. If the order doesn’t match, then all-reduce for the entire bucket waits for the gradient which is the last to
arrive.
With find_unused_parameters=False it’s not necessary to reorder layers or parameters to achieve optimal
performance.

https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html

6https://docs.nvidia.com/deeplearning/performance/index.html
Wave Quantization effect

Deep Learning Performance Documentation

https://docs.nvidia.com/deeplearning/performance/index.html

7https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-connected/index.html

Linear/Fully-Connected Layers User's Guide

The following quick start checklist provides specific tips for fully-
connected layers.

• Choose the batch size and the number of inputs and outputs to be
divisible by 4 (TF32) / 8 (FP16) / 16 (INT8) to run efficiently on
Tensor Cores. For best efficiency on A100, choose these
parameters to be divisible by 32 (TF32) / 64 (FP16) / 128 (INT8) .

• Especially when ones are small, choosing the batch size and the
number of inputs and outputs to be divisible by at least 64 and
ideally 256 can streamline tiling and reduce overhead.

• Larger values for batch size and the number of inputs and outputs
improve parallelization and efficiency.

• As a rough guideline, choose batch sizes and neuron counts
greater than 128 to avoid being limited by memory bandwidth.

https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-connected/index.html

8https://docs.nvidia.com/deeplearning/performance/dl-performance-convolutional/index.html

Convolutional Layers User's Guide
The following quick start checklist provides specific tips for
convolutional layers.
• Choose the number of input and output channels to be divisible

by 8 (for FP16) or 4 (for TF32) to run efficiently on Tensor
Cores. For the first convolutional layer in most CNNs with 3-
channel images, padding to 4 channels is sufficient if a stride of
2 is used.

• Choose parameters to be divisible by at least 64 and ideally 256
to enable efficient tiling and reduce overhead.

• Larger values for size-related parameters can improve
parallelization.

• When the size of the input is the same in each iteration,
autotuning is an efficient method to ensure the selection of the
ideal algorithm for each convolution in the network.
torch.backends.cudnn.benchmark = True.

• Choose tensor layouts in memory to avoid transposing input and
output data. We recommend using the NHWC format where
possible.

https://docs.nvidia.com/deeplearning/performance/dl-performance-convolutional/index.html

9https://docs.nvidia.com/deeplearning/performance/dl-performance-recurrent/index.html

Recurrent Layers User's Guide
The following quick start checklist provides specific tips for recurrent layers.
• Recurrent operations can be parallelized. We recommend using

NVIDIA® cuDNN implementations, which do this automatically.
• When using the standard implementation, minibatch size and hidden

sizes should be:
• Divisible by 8 (for FP16) or 4 (for TF32) to run efficiently on Tensor

Cores.
• Divisible by at least 64 and ideally 256 to improve tiling efficiency.
• Greater than 128 (minibatch size) or 256 (hidden sizes) to be

limited by computation rate rather than memory bandwidth.
• When using the persistent implementation (available for FP16 data

only):
• Hidden sizes should be divisible by 32 to run efficiently on Tensor

Cores. Better tiling efficiency may be achieved by larger multiples
of 2, up to 256.

• Minibatch size should be divisible by 8 to run efficiently on Tensor
Cores...

• Try increasing parameters for better efficiency.

https://docs.nvidia.com/deeplearning/performance/dl-performance-recurrent/index.html

10https://docs.nvidia.com/deeplearning/performance/dl-performance-memory-limited/index.html

Memory-Limited Layers User's Guide

The following quick start checklist provides specific tips for layers whose performance is
limited by memory accesses (Batch Normalization, Activations, Pooling, ...).

• Explore the available implementations of each layer in the NVIDIA cuDNN API Reference
or your framework. Often the best way to improve performance is to choose a more
efficient implementation.

• Be aware of the number of memory accesses required for each layer. Performance of a
memory-bound calculation is simply based on the number of inputs, outputs, and weights
that need to be loaded and/or stored per pass. We don’t have recommended parameter
tweaks for these layers.

• Be aware of the impact of each layer on the overall training step performance. Memory-
bound layers are most likely to take a significant amount of time in small networks where
there are no large and computation-heavy layers to dominate performance.

https://docs.nvidia.com/deeplearning/performance/dl-performance-memory-limited/index.html

AlgoPerf Results
1st : Distributed Shampoo

1st : Schedule Free AdamW

External tuning leaderboard
to simulate tuning with a limited amount of parallel resources

Self-tuning leaderboard
to simulate fully automated tuning on a single machine

12torch.compile, the missing manual

torch.compile, the missing manual

Models tend to fall into one of 3 different regimes:

1.It just works. torch.compile friendly (e.g., gpt-fast, torchao).

2.It works with a little work. able to get to torch.compile with minimal
investment.

3.It’s going to be a slog. expect to spend a lot of time working with the
PyTorch team fixing bugs.

https://docs.google.com/document/d/1y5CRfMLdwEoF1nTk9q8qEu1mgMUuUtvhklPKJ2emLU8/edit#heading=h.ivdr7fmrbeab

13Why Utilizing The Maximum Amount Of Memory (Almost) Never Leads To A Better Training
Throughput

The curse of GPU Memory Allocation

• The maximum minibatch size before getting OOM errors does not necessarily give the best training
throughput. Track the num_alloc_retries to understand when the throughput will degrade.

• Memory fragmentation can be the reason for “lost” GPU memory capacity.

• FSDP encounters non-deterministic allocations, which may lead to slower throughput and OOM
errors. Use expandable_segments to counteract this behavior as a hotfix, but do not expect to have
more available memory.

• Not all models trigger FSDP’s behavior, which still needs to be investigated in more depth as to
why this happens.

https://medium.com/@alex.isenko/why-utilizing-the-maximum-amount-of-memory-almost-never-leads-to-a-better-training-throughput-63ddbdf1585f
https://medium.com/@alex.isenko/why-utilizing-the-maximum-amount-of-memory-almost-never-leads-to-a-better-training-throughput-63ddbdf1585f

Training is a Music !!

