

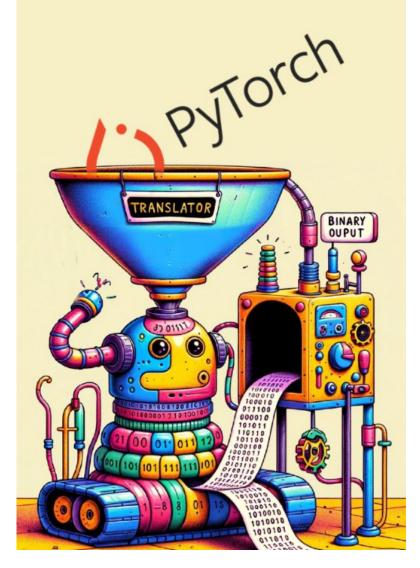
Optimised Deep Learning - Jean Zay

Practical work (of your choice!)

Like you want!

- JIT **∢**
- Data Parallelism under the hood ◀
 - HPO **⋖**
 - Data Augmentation ◀
 - Large model ◀

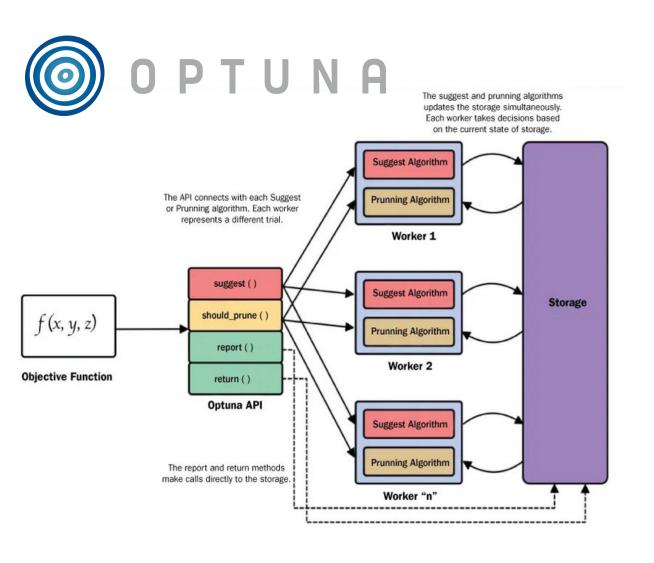
Just-In Time Compilation

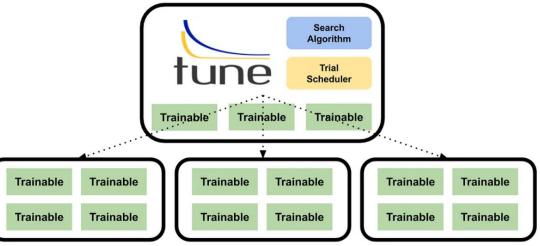


How to accelerate deep learning codes using *old school* compilation?

HPO at Scale

How to scale your HPO on supercomputer? How to use Optuna & Ray at scale?





Data Augmentation

Is CPU enough? How to delegate the Data Augmentation to the GPU? How to optimize the Data Augmentation on the GPU?

• RandAugment (torchvision): combinations of multiple transforms, either geometric or photometric, or both

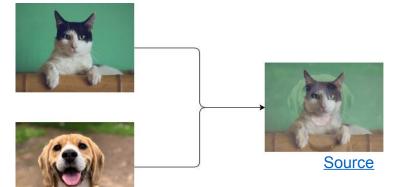
IMAGENET

MixUp (mixup.py): mixing up the features and their corresponding labels

$$\tilde{x} = \lambda x_i + (1 - \lambda)x_j,$$

$$\tilde{y} = \lambda y_i + (1 - \lambda)y_i,$$

where x_i, x_j are raw input vectors where y_i, y_j are one-hot label encodings



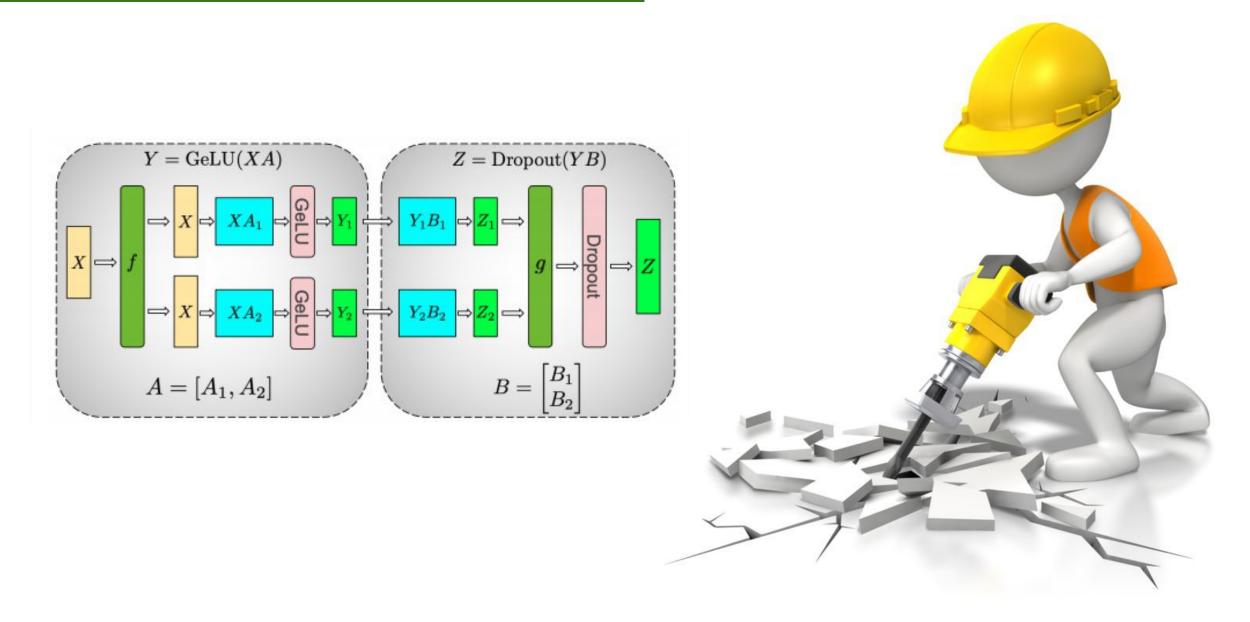
• CutMix (cutmix.py): replacing an image region with a patch from another training image

Large model

Pipeline Parallelism

Optimized Data Parallelism ZeRO - FSDP

Tensor Parallelism under the hood



Conclusions

- JIT **∢**
- Data Parallelism under the hood ◀
 - HPO **⋖**
 - Data Augmentation ◀
 - Large model ◀

Just-In Time Compilation

PyTorch

How to accelerate deep learning codes using *old school* compilation?

model_opt = torch.compile(model, mode="reduce-overhead")

HPO at Scale

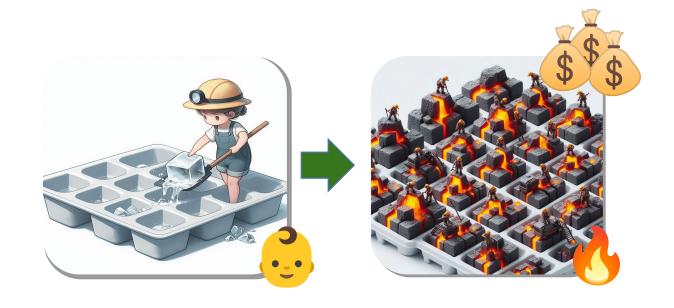
O P T U N A

L

- Database approach
- Not Multiprocess Native

- Multi-worker native
- Many parallel algorithms
- Difficult to use (especially with slurm)

How to scale your HPO on supercomputer?
How to use Optuna & Ray at scale?



Data Augmentation

Is CPU enough? How to delegate the Data Augmentation to the GPU? How to optimize the Data Augmentation on the GPU?

RandAugment (torchvision): CPU is enough

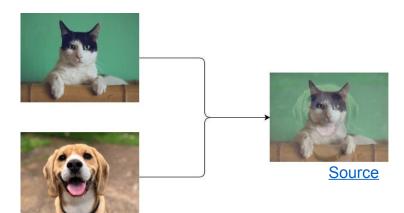
IMAGENET

MixUp (mixup.py): much better on GPU

$$\tilde{x} = \lambda x_i + (1 - \lambda) x_j,$$

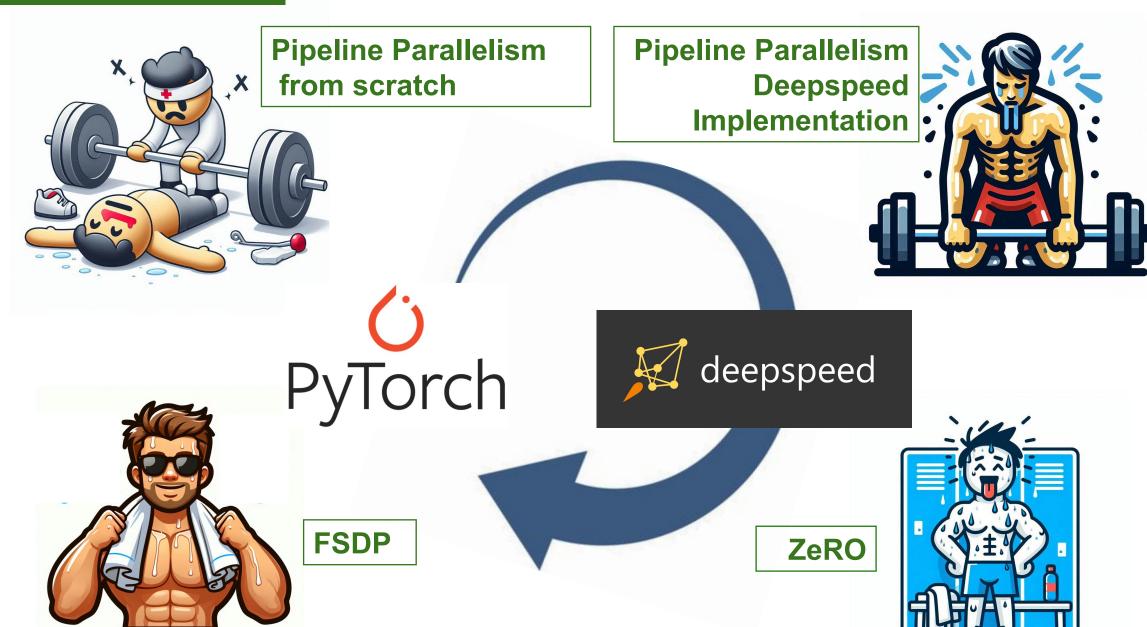
$$\tilde{y} = \lambda y_i + (1 - \lambda) y_i,$$

where x_i, x_j are raw input vectors where y_i, y_j are one-hot label encodings

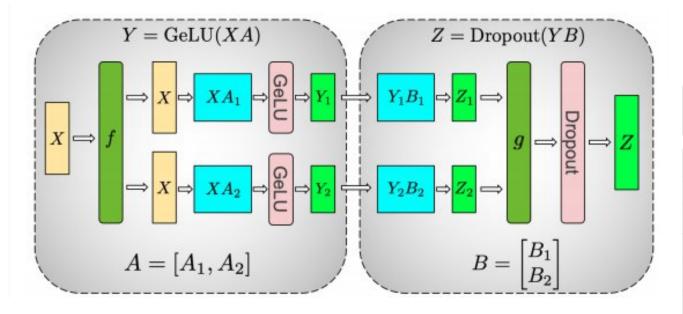


• CutMix (cutmix.py): tranform loop over images into loop over batches to improve parallelism and benifit from the GPU acceleration

Large model



Tensor Parallelism under the hood



tp tensor slicing
Nathan CASSEREAU authored 3 months ago

Name	Last commit
🥏 balise1.py	tp tensor slicing
₱ balise10.py	tp tensor slicing
₱ balise11.py	tp tensor slicing
🏞 balise2.py	tp tensor slicing
🕏 balise3.py	tp tensor slicing
🥏 balise4.py	tp tensor slicing
🏞 balise5.py	tp tensor slicing
🥏 balise6.py	tp tensor slicing
₱ balise7.py	tp tensor slicing
🥏 balise8.py	tp tensor slicing
₱ balise9.py	tp tensor slicing