Table des matières
AMS sur Jean Zay
Présentation
AMS est une suite logiciel de modélisation moléculaire utilisant la théorie de la fonctionnelle de la densité.
Liens utiles
Versions disponibles
Attention : un bug a été trouvé pour les versions antérieures a 2020.103. Il impacte le calcul de fréquences analytiques dans certaines conditions.
Version | Modules à charger |
---|---|
2024.103 MPI | ams/2024.103-mpi |
2023.104 MPI | ams/2023.104-mpi |
2022.103 MPI | ams/2022.103-mpi |
2021.102 MPI | ams/2021.102-mpi |
2020.103 MPI | ams/2020.103-mpi |
2020.101 MPI | ams/2020.101-mpi |
2019.305 MPI | adf/2019.305-mpi |
2019.104 MPI CUDA | adf/2019.104-mpi-cuda cuda/10.1.1 |
Utilisation de l'interface graphique AMSview
Pour utiliser l'interface graphique d'AMS il est nécessaire d'utiliser les versions à partir de 2024.103.
Informations sur le portage GPU
Toutes les fonctionnalités d'ADF ne sont pas disponibles sur GPU. Veuillez consulter la page dédiée sur le site d'ADF si vous souhaitez utiliser cette version.
Exemple d'utilisation sur la partition CPU
- adf.slurm
#!/bin/bash #SBATCH --nodes=1 # Number of nodes #SBATCH --ntasks-per-node=40 # Number of tasks per node #SBATCH --cpus-per-task=1 # Number of OpenMP threads per task #SBATCH --hint=nomultithread # Disable hyperthreading #SBATCH --job-name=ADF # Jobname #SBATCH --output=ADF.o%j # Output file #SBATCH --error=ADF.o%j # Error file #SBATCH --time=10:00:00 # Expected runtime HH:MM:SS (max 100h) ## ## Please, refer to comments below for ## more information about these 4 last options. ##SBATCH --account=<account>@cpu # To specify cpu accounting: <account> = echo $IDRPROJ ##SBATCH --partition=<partition> # To specify partition (see IDRIS web site for more info) ##SBATCH --qos=qos_cpu-dev # Uncomment for job requiring less than 2 hours ##SBATCH --qos=qos_cpu-t4 # Uncomment for job requiring more than 20h (up to 4 nodes) # Manage modules module purge module load ams/2022.103-mpi export SCM_TMPDIR=$JOBSCRATCH # Execution ./opt.inp
Exemple d'utilisation sur la partition GPU
- adf.slurm
#!/bin/bash #SBATCH --nodes=1 # Number of nodes #SBATCH --gres=gpu:4 # Allocate 4 GPUs per node #SBATCH --ntasks-per-node=40 # Number of tasks per node #SBATCH --cpus-per-task=1 # Number of OpenMP threads per task #SBATCH --hint=nomultithread # Disable hyperthreading #SBATCH --job-name=ADF # Jobname #SBATCH --output=ADF.o%j # Output file #SBATCH --error=ADF.o%j # Error file #SBATCH --time=10:00:00 # Expected runtime HH:MM:SS (max 100h for V100, 20h for A100) ## ## Please, refer to comments below for ## more information about these 4 last options. ##SBATCH --account=<account>@v100 # To specify gpu accounting: <account> = echo $IDRPROJ ##SBATCH --partition=<partition> # To specify partition (see IDRIS web site for more info) ##SBATCH --qos=qos_gpu-dev # Uncomment for job requiring less than 2 hours ##SBATCH --qos=qos_gpu-t4 # Uncomment for job requiring more than 20h (up to 16 GPU, V100 only) # Cleans out the modules loaded in interactive and inherited by default module purge # Load the necessary modules module load adf/2019.104-mpi-cuda cuda/10.1.1 # JOBSCRATCH is automatically deleted at the end of the job export SCM_TMPDIR=$JOBSCRATCH # Execution ./opt.inp
Remarques
- Les jobs ont tous des ressources définies dans Slurm par une partition et une “Qualité de Service” QoS (Quality of Service) par défaut. Vous pouvez en modifier les limites en spécifiant une autre partition et/ou une QoS comme indiqué dans notre documentation détaillant les partitions et les Qos.
- Pour les comptes multi-projets ainsi que ceux ayant des heures CPU et GPU, il est indispensable de spécifier l'attribution d'heures sur laquelle décompter les heures de calcul du job comme indiqué dans notre documentation détaillant la gestion des heures de calcul.