

Multicore and Massive Parallelism at IBM

Luigi Brochard IBM Distinguished Engineer IDRIS, February 12, 2009

_	
-	
	And a second sec
_	
_	

Agenda

Multi core and Massive parallelism IBM multi core and massive parallel systems Programming Models Toward a Convergence ?

-	
_	

Why Multicore?

- Power ~ Voltage² * Frequency ~ Frequency³
- We have a heat problem:
 - Power per chip is constant due to cooling
 - => no more frequency improvment

But

- Smaller lithography => more transistors
- Decrease frequency by 20% => 50%
 Pov/er saving
 - => twice more transistors at same power consumption
- And
 - Simpler « cpu » => less transistors => more « cpu » per chip

Accelerators

Why Parallelism?

Always best power efficient solution

- 2 processors at frequency F/2 vs 1 processor at frequency F
 - Produce the same work if NO OVERHEAD
 - Consume ¼ of the energy
- Two types of parallelism
 - Internal parallelism is limited by:
 - Number of cores on a chip
 - Performance per wattin internal parallelism
 - External parallelism is limited by:
 - Floor Space
 - Total power consumption !
- Future is Multicore Massive Parallel Systems
 - How to manage/program million cores system/application

So far

- Multicore and Massive Parallelism have developed independently
 - Multicore :
 - Power4 : first dual core homogeneous microprocessor in 2001
 - Cell BE : first nine core heterogeneous microprocessor in 2004
 - Massively Parallelism
 - Long time ago : CM1, CM2, Cosmic Cube ,GF11
 - Recently : BG/L in 2004

Power Efficency (MF/w) of Top 8 TOP500 Systems

* Number shown in column is Nov 2008 TOP500 rank

Rank	Site	Mfgr	System	MF/w	Relative
1	LANL	IBM	Roadrunner QS22/LS21	445	1.00
2	ORNL	Cray	Jaguar XT5 2.3 GHz QC Opteron	152	2.92
3	NASA Ames	SGI	QC 3.0 Xeon	233	1.91
4	LLNL	IBM	Blue Gene/L	205	2.17
5	ANL	IBM	Blue Gene/P	357	1.25
6	TACC	Sun	2.3 GHz QC Opteron	217	2.05
7	NERSC/LBNL	Cray	Jaguar XT4 2.3 GHz QC Opteron	232	1.92
8	ORNL	Cray	XT4 2.1 GHz QC Opteron	130	3.43

POWER Processor Roadmap

BINARY COMPATIBILITY

IBM

POWER6 Architecture

Features:

- Ultra High Frequency dual core chip
- 7way superscalar, 2-way SMT core5 instruction per thread,
- 8 execution units
 - 2LS, 2 FP, 2 FX, 1 BR, 1 VMX
- •790 M transistors, 341 mm2 die
- Upto 128 core SMP systems
- 8MB on chip L2 point of coherency
- •One chip L3 and memory controller
- Two memory controller on chip

PERCS

PERCS – Productive, Easy-to-use, Reliable Computing System

High Productivity Computing Systems Overview

Goal: Provide a new generation of economically viable high productivity computing systems

Impact:

- Performance (time-to-solution): speedup by 10X to 40X
- **Programmability** (idea-to-first-solution): dramatically reduce cost & development time
- **Portability** (transparency): insulate software from system
- Robustness (reliability): continue operating in the presence of localized hardware failure, contain the impact of software defects, & minimize likelihood of operator error

Applications:

Weather Prediction

Ocean/wave Ship Forecasting

Ship Design

Climate Nuclear Stockpile Modeling Stewardship

Weapons Integration

PERCS – Productive, Easy-to-use, Reliable Computing System is IBM's response to DARPA's HPCS Program

© 2007 IBM Corporation

trn		
IKM	_	
	-	
	_	

IBM Hardware Innovations

- Next generation POWER processor with significant HPCS enhancements
 - Leveraged across IBM's server platforms
- Enhanced POWER Instruction Set Architecture
 - Significant extensions for HPCS
 - Leverage the existing POWER software eco-system
- Integrated high speed network (very low latency, high bandwidth)
- Multiple hardware innovations to enhance programmer productivity
- Balanced system design to enable extreme scalability
- Significant innovation in system packaging, footprint, power and cooling

IBM Software Innovations

- Productivity focus: Tools for all aspects of human/system interaction; providing a 10x improvement in productivity
- Operational Efficiency: Advanced capabilities for resource management and scheduling including multi-cluster scheduling, checkpoint/restart, reservation in advance, backfill scheduling
- Systems Management: Significantly reduced complexity of managing petascale systems
 - Simplify the install, upgrade, and bring-up of large systems
 - Non-intrusive and efficient monitoring of the critical system components
 - Management framework for the networks, storage, and resources
 - OS level management: user ids, passwords, quotas, limits, ...
- Reliability, Availability and Serviceability: Design for continuous operations

IBM PERCS Software Innovations

- Leverage proven software architecture and extend it to petascale systems
 - Robustness: Design for continuous operation even in the event of multiple failures with minimal to no degradation
 - Scaling: All the required software will scale to tens of thousands of nodes while significantly reducing the memory footprint
 - File System: IBM Global Parallel File System (GPFS) will continue to drive toward unprecedented performance and scale.
 - Application Enablement: Significant innovation in protocols (LAPI), and programming models (MPI, OpenMP), new languages (X10), compilers (C, C++, FORTRAN, UPC), libraries (ESSL, PESSL) and tools for debugging (Rational_R, PTP) and performance tuning (HPCS toolkit)

Blue Waters

- National Science Foundation Track 1 Award
- Petascale Computing Environment for Science and Engineering
- Focus on Sustained Petascale Computing
 - -Weather Modeling
 - -Biophysics
 - -Biochemistry
 - -Computer Science projects...
- Technology: IBM POWER7 Architecture
- Location: NCSA

Other Data

Roadrunner System Overview

IBM Confidential

© 2007 IBM Corporation

Roadrunner is a hybrid cell accelerated petascale system delivered in 2008

Eight 2nd-stage 288-port IB 4X DDR switches

Roadrunner Organization

Roadrunner at a glance

Cluster of 18 Connected Units

- 12,960 IBM PowerXCell 8i accelerators
- 6,912 AMD dual-core Opterons (comp)
- 408 AMD dual-core Opterons (I/O)
- 34 AMD dual-core Opterons (man)
- 1.410 Petaflop/s peak (PowerXCell)
- 46 Teraflop/s peak (Opteron-comp)
- 1.105 Petaflop/s sustained Linpack

InfiniBand 4x DDR fabric

- 2-stage fat-tree; all-optical cables
- Full bi-section BW within each CU
 - 384 GB/s
- Half bi-section BW among CUs
 - 3.4 TB/s
- Non-disruptive expansion to 24 CUs
- 104 TB memory
 - 52 TB Opteron
 - 52 TB Cell eDP

408 GB/s sustained File System I/O:

- 204x2 10G Ethernets to Panasas

- RHEL & Fedora Linux
- SDK for Multicore Acceleration
- xCAT Cluster Management
 - System-wide GigEnet network
- 2.48 MW Power Linpack:
 - 0.445 MF/Watt
- Area:
 - 279 racks
 - 5200 ft²
- Weight:
 - 500,000 lb
- IB Cables:
 - 55miles

_	
-	
_	
_	

BladeCenter® QS22 – PowerXCell 8i

- Core Electronics
 - Two 3.2GHz PowerXCell 8i Processors

Multi-PF Solutions

- SP: 460 GFlops peak per blade
- DP: 217 GFlops peak per blade
- Up to 32GB DDR2 800MHz
- Standard blade form factor
- Support BladeCenter H chassis
- Integrated features
 - Dual 1Gb Ethernet (BCM5704)
 - Serial/Console port, 4x USB on PCI
- Optional
 - Pair 1GB DDR2 VLP DIMMs as I/C buffer
 (2GB total) (46C0501)
 - 4x SDR InfiniBand adapter (32R1760)

*The HSC interface is not enabled on the standard products. This interface can be enabled on "custom"

- SAS expansion card (39Y9190) system implementations for clients by working with the Cell services organization in IBM Industry Systems.

-	
	and the second
_	
-	

Roadrunner Triblade node integrates Cell and Opteron blades

- QS22 is last generation IBM Cell blade containing two new enhanced doubleprecision (eDP/PowerXCellTM) Cell chips
- Expansion blade connects two QS22 via four PCI-e x8 links to LS21 & provides the node's ConnectX IB 4X DDR cluster attachment
- LS21 is an IBM dual-socket Opteron blade
- 4-wide IBM BladeCenter packaging
- Roadrunner Triblades are completely diskless and run from RAM disks with NFS & Panasas only to the LS21
- Node design points:
 - One Cell chip per Opteron core
 - ~400 GF/s double-precision & ~800 GF/s single-precision
 - 16 GB Cell memory & 16 GB Opteron memory

System Configuration

BlueGene/P

IEM		
len	-	
	Ξ.	
	_	

BGP vs BGL

	Property	BG/L	BG/P
Node	Node Processors	2* 440 PowerPC	4* 450 PowerPC
Properties	Processor Frequency	0.7GHz	0.85GHz (target)
	Coherency	Software managed	SMP
	L1 Cache (private)	32KB/processor	32KB/processor
	L2 Cache (private)	14 stream prefetching	14 stream prefetching
	L3 Cache size (shared)	4MB	8MB
	Main Store/node	512MB/1GB	2GB
	Main Store Bandwidth	5.6GB/s (16B wide)	13.9 GB/s (2*16B wide)
	Peak Performance	5.6GF/node	13.9 GF/node
Torus	Bandwidth	6*2*175MB/s= <mark>2.1GB/s</mark>	6*2*435MB/s=5.2GB/s
Network	Hardware Latency (Nearest	200ns (32B packet)	160ns (32B packet)
	Neighbor)	1.6us(256B packet)	1.3us(256B packet)
	Hardware Latency	<mark>6.4us (64 hops)</mark>	5.5us(64 hops)
	(Worst Case)		
Collective Network	Bandwidth	2*350MB/s=700MB/s	2*0.87GB/s=1.74GB/s
	Hardware Latency (round trip worst case)	5.0us	4.5us
System	Peak Performance 72k nodes	410TF	1PF
Properties	Total Power	1.7MW	2.5-3.0MW

Blue Gene/P Architectural Highlights

Scaled performance through density and frequency bump

- 2x performance from BlueGene/L through doubling the processors/node
- 1.2x from frequency bump due to technology (target 850 MHz)

Enhanced function from BlueGene/L

- 4 way SMP
- DMA, remote put-get, user programmable memory prefetch
- Greatly enhanced 64 bit performance counters (including 450 core)

Hold BlueGene/L packaging as much as possible:

- Improve networks through higher speed signaling
- Modest power increase through aggressive power management

Higher signaling rate

- 2.4x higher bandwidth, lower latency for Torus and Tree networks
- 10x higher bandwidth for Ethernet IO

72ki nodes in 72 racks for 1.00 PF/s peak

- Could be as much as 750 TF/s on Linpack
- Amazing ASC application performance of around 250 TF/s

trm		
IKM	_	
	-	
subsection and the second s	_	
	_	

Sequoia Announcement

- On Feb 3, IBM announced a deal to sell a new supercomputer, SEQUOIA, to DOE
- 20 PFlops system in 2011
- 20 x faster than RoadRunner
- 10 times less energy per calculation than Jaguar
- 18 cores per chip, interconnect on the chip, 1.6 millions cores tota

Programming Models And Languages Support for Petascale Computing

Different Approaches to Exploit Multi-Core Multi-Function Chips

Systems built around multi-core processor chips are driving the development of new techniques for automatic exploitation by applications

_	

Two Standards

Two standards evolving from different sides of the market

OpenMP program computing PI

```
int i;
float x, Pi, sum;
float step = 1.0f / (float)NSET;
sum = 0.0f;
#pragma omp parallel for private(x) reduction(+:sum)
for( i = 0; i < NSET; i++ )
{
    x = (i+0.5)*step;
    sum = sum + 4.0/(1.0+x*x);
}
Pi = step * sum;
```


CUDA: computing PI

```
global void
                                       PiSimple2( float* g partialOut, float step,
                                          int NSamples)
float step = 1.0f / (float)NSET;
float sum = 0.0f;
                                         const int tid = blockDim.x * blockIdx.x +
                                          threadIdx.x;
PiSimple2<<<GRIDDIM, BLOCKDIM>>>
                                         const int blocksize = blockDim.x;
    (d partials, step, NSET);
                                         const int THREAD N = blockDim.x * gridDim.x;
CUT_CHECK_ERROR("***PiSimple2
execution failed!!!***");
                                         float x, partialsum = 0.0f;
                                       for(int i = tid; i < NSamples; i += THREAD N) {</pre>
                                            x = (i * 0.5f) * step;
                                            partialsum = partialsum + 4.0f / (1.0f
CUDA SAFE CALL (cudaMemcpy (h partia
   ls, d partials,
                                                         + x*x);
   fSmallArraySize,
   cudaMemcpyDeviceToHost) );
                                          shared float threadsum[BLOCKDIM];
for (j = 0; j < GRIDDIM; j++)
                                        threadsum[threadIdx.x] = partialsum;
{
   sum += h partials[j];
                                           syncthreads();
                                        float blocksum = 0;
Pi = step * sum;
                                         if (threadIdx.x == 0)
                                           const int blockindex = blockIdx.x;
                                           for (int i = 0; i < blocksize; i++)
                                               blocksum += threadsum[i];
                                           q partialOut[blockindex] = blocksum;
```


OpenCL Memory Model

Shared memory model

Release consistency

Multiple distinct address spaces

 Address spaces can be collapsed depending on the device's memory subsystem

Address Qualifiers

- private
- _local
- __constant and __global

• Example:

global float4 *p;

OpenMP Memory Model

Shared memory model

Strong consistency

Single address space

Uniform address space

Pragmas

- V2.5 : omp parallel
- V3.0 : omp tasks

Example:

#pragma OMP parallel

What is Partitioned Global Address Space (PGAS)?

- Computation is performed in multiple places.
- A place contains data that can be operated on remotely.
- Data lives in the place it was created, for its lifetime.
- A datum in one place may reference a datum in another place.
- Data-structures (e.g. arrays) may be distributed across many places.
- Places may have different computational properties

Current Language Landscape

TIME

Key Problem: Frequency Improvements Do Not Match App Needs Increasing Burden On The Application Design Objective: Provide Tools to allow Scientists to Bridge the Gap

Other Data

Next stop, exaflop?

www.lanl.gov/road

www.lanl.gov/news

www-03.ibm.com/press/us/en/pressrelease/24405.wss

www.ibm.com/deepcomputing

IBM Confidential

© 2007 IBM Corporation

IBM Ultra Scale Approaches

- Blue Gene Maximize Flops Per Watt with Homogeneous Cores by reducing Single Thread Performance
- Power/PERCS Maximize Productivity and Single Thread Performance with Homogeneous Cores
- Roadrunner Use Heterogeneous Cores and an Accelerator Software Model to Maximize Flops Per Watt and keep High Single Thread Performance

HPC Cluster Directions

